{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ " ** An Introduction to Nuclear Physics **\n", " \n", " ** Chapter I: nuclear massess and binding energies **\n", "\n", "by *Dr. Jiangming Yao*, \n", "\n", "[Nuclear theory and nuclear astrophysics group](https://jmyao17.github.io/ntg-phy/index.html),\n", "\n", "School of Physics and Astronomy, Sun Yat-sen University" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic formulas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Nuclear (atomic) mass:\n", "\n", "$$\n", "M(Z,A) = ZM_H + (A-Z)M_n,\\quad M_H\\approx M_p + m_e\n", "$$\n", "\n", "- Nuclear (atomic) mass excess:\n", "\n", "$$\n", "\\Delta M(Z,A) = M(Z,A) - A m_u,\n", "$$\n", "where $m_u$ is defined based on the mass of $^{12}$C,\n", "\n", "$$\n", "m_u = M(Z=6, A=12)/12 = 931.493856 {\\rm MeV}.\n", "$$\n", "\n", "- Nuclear binding energy:\n", "\n", "$$\n", "B(Z, A) = Z M_H + (A-Z)M_n - M(Z, A)\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Numerical calculation for $^{16}$O" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "mass_excess_O16=-4.737 # MeV\n", "\n", "BE_12C=7.680144*12 # MeV\n", "\n", "M_H = 938.272+0.511 # MeV\n", "M_p = 938.272 # MeV\n", "M_n = 939.565 # MeV" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Atomic Mass for 12C: 11177.926272 [MeV]\n", "1 u : 931.493856 [MeV]\n", "Mass excess for 12C : 0.0 [MeV]\n" ] } ], "source": [ "# atomic mass for 12C\n", "Mass_12C = 6*M_H+6*M_n - BE_12C\n", "\n", "# 1 u\n", "Unit=Mass_12C/12 \n", "\n", "print(\"Atomic Mass for 12C: {} [MeV]\".format(Mass_12C))\n", "print(\"1 u : {} [MeV]\".format(Unit))\n", "\n", "print(\"Mass excess for 12C : {} [MeV]\".format(Mass_12C-12*Unit))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Atomic Mass for 16O: 14899.164696000002 [MeV]\n" ] } ], "source": [ "# atomic mass for 16O\n", "\n", "Mass_16O = Unit * 16 + mass_excess_O16\n", "\n", "print(\"Atomic Mass for 16O: {} [MeV]\".format(Mass_16O))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Binding Energy for 16O: 127.61930399999801 [MeV]\n", "E/A for 16O: 7.976206499999876 [MeV]\n" ] } ], "source": [ "# binding energy for 16O\n", "\n", "BE_16O = 8*M_H+8*M_n - Mass_16O\n", "\n", "print(\"Binding Energy for 16O: {} [MeV]\".format(BE_16O))\n", "print(\"E/A for 16O: {} [MeV]\".format(BE_16O/16))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Binding energies" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "df=pd.read_csv('./dataset/AME2003.DAT',sep='\\s+',skiprows=None)\n", "df.columns=['A','Z','Mass_excess']" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AZMass_excess
09628.91050
110615.69870
211610.65030
31260.00000
41363.12501
\n", "
" ], "text/plain": [ " A Z Mass_excess\n", "0 9 6 28.91050\n", "1 10 6 15.69870\n", "2 11 6 10.65030\n", "3 12 6 0.00000\n", "4 13 6 3.12501" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "df['N']=df['A']-df['Z']" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "df['BE']=df['Z']*M_H+df['N']*M_n - (Unit * df['A'] + df['Mass_excess'])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AZMass_excessNBE
09628.91050339.037796
110615.69870460.320740
211610.65030573.440284
31260.00000692.161728
41363.12501797.107862
51463.019898105.284126
61569.873109106.502060
716613.6940010110.752304
817621.0390011111.478448
918624.9300012115.658592
..................
2018713.1140011126.692592
2119715.8620012132.015736
2220721.7700013134.178880
2321725.2500014138.770024
2422732.0400015140.051168
2512832.04800458.549728
2613823.11200575.556872
271488.00736698.732656
281582.855607111.955560
29168-4.737008127.619304
\n", "

30 rows × 5 columns

\n", "
" ], "text/plain": [ " A Z Mass_excess N BE\n", "0 9 6 28.91050 3 39.037796\n", "1 10 6 15.69870 4 60.320740\n", "2 11 6 10.65030 5 73.440284\n", "3 12 6 0.00000 6 92.161728\n", "4 13 6 3.12501 7 97.107862\n", "5 14 6 3.01989 8 105.284126\n", "6 15 6 9.87310 9 106.502060\n", "7 16 6 13.69400 10 110.752304\n", "8 17 6 21.03900 11 111.478448\n", "9 18 6 24.93000 12 115.658592\n", ".. .. .. ... .. ...\n", "20 18 7 13.11400 11 126.692592\n", "21 19 7 15.86200 12 132.015736\n", "22 20 7 21.77000 13 134.178880\n", "23 21 7 25.25000 14 138.770024\n", "24 22 7 32.04000 15 140.051168\n", "25 12 8 32.04800 4 58.549728\n", "26 13 8 23.11200 5 75.556872\n", "27 14 8 8.00736 6 98.732656\n", "28 15 8 2.85560 7 111.955560\n", "29 16 8 -4.73700 8 127.619304\n", "\n", "[30 rows x 5 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(30)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "Text(0.5,0,'Mass number A')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "Text(0,0.5,'E/A [MeV]')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAENCAYAAADnrmWtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X+cXHV97/HXZzdZks3G0sxGGsDMgvgDEBJIsHhRvIK0MVgotip1V9YWu7rBa/Taqu0+VKp3LyLX2vi4F3CrwSQzAhZKtBVbeYg/qhZLEoOAYguyGzZEyC4ghCUmZD/3jzMzzM7Oz92ZMz/O+/l4nMfOnDlzzvfMzH7OOd/v93y+5u6IiEi0tNW7ACIiEj4FfxGRCFLwFxGJIAV/EZEIUvAXEYkgBX8RkQhS8BcRiSAFfxGRCAot+JvZRjO7z8zuN7MPhLVdERGZbUEYGzGzVwF/DrwaOAT8i5l9w93/q9B7uru7vaenJ4ziiYi0hJ07d064+/Jylg0l+AMnA3e5+xSAmX0PuAT4TKE39PT0sGPHjpCKJyLS/MxsrNxlw6r2uQ8418xiZtYJrAdeEtK2RUQkRyhn/u7+czO7GrgDOADcAzyfu5yZDQADACtXrgyjaCIikRRag6+7f8ndz3T3c4EngFn1/e4+4u5r3X3t8uVlVVuJiMgchFXnj5m92N0fN7OVwFuA14S1bRFpHIcPH2Z8fJyDBw/WuyhNa9GiRRx//PEsXLhwzusILfgDt5pZDDgMXOHuT4a4bRFpEOPj4yxdupSenh7MrN7FaTruzuTkJOPj45xwwglzXk9owd/dXxfWtkSkcR08eFCBfx7MjFgsxv79++e1Ht3h26CSyWTmH2TBggWYGd3d3XR3d8+YV+y1np4ekslkvXdFZBYF/vmpxuen4N9gkskk3d3d9PX1MTYWdNk9cuQIAJOTk0xOTs6YV+y1sbEx+vr6dEAQkVkU/BtIMplkYGAgE8SrKfeAcNRRR1XtSiF9ldLW1qaDizSN2267DTPjgQceAGB0dBQz42Mf+1hmmYmJCRYuXMj73vc+AK688kqOO+44Vq9enZmeeuop7rjjDtasWcNpp53GmjVruPPOOzPr2LlzJ6eddhonnXQS73//+0mPm/7EE09wwQUX8LKXvYwLLriAJ58MmkG/9rWvcfrpp7N69WrWrl3LD37wg9p8AO7ekNOaNWs8KhKJhMdiMQcaZurq6nLA29vbHfBYLFZRGRctWuSJRKLeH600oJ/97Gf1LoK7u7/1rW/11772tf6JT3zC3d0ffvhhP/HEE3316tWZZa699lpftWqVX3HFFe7u/olPfMKvueaaWevatWuX7927193d7733Xj/22GMzr5111ln+ox/9yKenp33dunV+++23u7v7X/7lX/pVV13l7u5XXXWVf/jDH3Z392eeecanp6fd3f2ee+7xV7ziFXnLn+9zBHZ4mTFWZ/51lkwm+dM//dOanO3Px4EDB4D81UrlOHjwYKbKSdVNMh+1uLI8cOAAP/zhD/nSl77ETTfdlJm/ePFiTj755ExqmZtvvpm3ve1tJdd3xhlncOyxxwJw6qmncvDgQX7zm9+wb98+nn76aV7zmtdgZlx22WVs374dCM7w+/v7Aejv78/M7+rqytTpP/vsszVrH1HwD1n2D7mrq4u+vj4OHz5c72LVXHb7w9KlS3UgkLKkq0LHxsZwd8bGxhgYGJj372f79u2sW7eOl7/85Sxbtoxdu3ZlXrv00ku56aabGB8fp729PRPU0z73uc9lqnze8IY3zFr3rbfeyhlnnMFRRx3F3r17Of744zOvHX/88ezduxeAxx57jBUrVgCwYsUKHn/88cxyt912G6985Su58MIL2bx587z2tRAF/xDl/pCfffbZehepLg4cODDjqkBXBlLI0NAQU1NTM+ZNTU0xNDQ0r/XeeOONXHrppUAQ7G+88cbMa+vWreOOO+7gxhtv5O1vf/us937wgx9k9+7d7N69m+985zszXrv//vv5yEc+whe+8AWATP1+tnLO5C+55BIeeOABtm/fPqMNopoU/Gsg++w+uwtmX1/frB+yBNJXBosXL9ZBQDL27NlT0fxyTE5Ocuedd/Lud7+bnp4errnmGm6++eZMoO7o6GDNmjV89rOf5Y/+6I/KXu/4+DiXXHIJW7du5aUvfSkQnOmPj4/PWCZ9JXHMMcewb98+APbt28eLX/ziWes899xzeeihh5iYmJjz/hai4F8F2X3y00E+fXZfaV151OW2FZgZbW1tujqIqEIJHueT+PGWW27hsssuY2xsjNHRUR555BFOOOGEGUH6Qx/6EFdffTWxWKysdT711FNceOGFXHXVVZxzzjmZ+StWrGDp0qXcdddduDtbt27l4osvBuCiiy5iy5YtAGzZsiUz/8EHH8wciHbt2sWhQ4fKLkdFym0ZDntqlt4+iUTCOzs76947J6pTPB5Xr6ImU0lvn3z/X52dnfP6zl//+tf7N7/5zRnzNm3a5OvWrfNTTz111vI33HDDjN4+xx57rK9atSozPfzww/6pT33KOzs7Z8x/7LHH3N397rvv9lNPPdVPPPFEv+KKKzI9eSYmJvy8887zk046yc877zyfnJx0d/dPf/rTfsopp/iqVav87LPP9n/7t3/Lux/z7e1T9yBfaGrU4J9IJDwej7uZeSwW87a2troHQE0zJzPTgaGBVdrVM/t/Tt/pC9TVM0S5DbaTk5NMT0/Xu1iSw1OXzNk9jNSw3Lx6e3sZHR1lenqa0dFRent7612klqDgX4F8PQ+kueiAIBJQ8C9DukE3nWtHWkv2AUGNy+FIX53J3FTj81PwLyG7qkdaX6Eqo66uLh0MqmTRokVMTk7qADBH6SrnRYsWzWs91qhfwNq1az19i3U96YxfCunq6uL6669XHXSFNJLX/BUaycvMdrr72nLWoeBfQltbm85QpKR4PM7w8LAOBFJXlQR/VfsUkUwmNeiElCW7mkh3KUszUPAvIJ1tU105yzffOshWoYym0gwU/AsYGhqKRLbNaojH4yQSCZ577rna3Ibe5NJXBQsXLtRBQBqGgn8eyWRSjbxl6OzsJJFIzLjxZtOmTXR2ds5YLrdRKqqef/55+vr6aGtr00FA6k7BP0e6a2ezMjMSiQTxeBwzIx6PMzg4mHne3t5e1nqWLFkyK4jDCwNNxONxRkZGZjVw9vb2MjIyMmP7N9xwA4ODg2o/SXH3WTeaqSuphK7cPBBhT/XK7ROPx+uem2Y+UzweL7p/5SaiM7Oq51RJJBKZYSE1lZ66urqUx0YqghK7zV06KVgjTbll6uzs9MHBwTlnO8wO6oWCcamDyFwlEomG/IybZdIBQYpR8J+HRjvzTwf6fGfg1Tgzr0XK3FIGBwfr/rm2wnTUUUfpQCAzKPjPQyKRqPs/ddgpieuRMjcWi4X+uba1tfng4GBdth3GtGDBAh0MIk7Bf47SQbCe/8BRyVderPonFovNaYCcJUuWZL6/fFVl2Z9rIpFo2YNAFH9PElDwn4PBwcG610WnG1mjIt9nng7SuYPmlPsZVlolln3Ar/f3H8Y0ODgY5lcsIVPwr1AjNULWqqG1UZUbpMs9AMynvSL3gLNkyZK6/x5qPZ1//vnz+fqkwTRk8Ac+CNwP3AfcCCwqtnxYwb/Ruh+aWSj73WwqGSu52gfQqFwdLFq0KFJXnq2o4YI/cBzwMLA49fyrwLuKvSeM4N+Ig69H7cy/EuVWBdXyANoI7UJhTqomai6NGvwfAZYBC4B/Bn6v2HtqEfxzqxgarcEvanX+81UoCIdxAI3SASB7UjVRY2u44B+UiY3AAWA/kCy1fLWDfyOe5ecGfp1lVaYe9ygU2zYEfe/Tj5csWdJQVYq1mtSjqHE0XPAHfhu4E1gOLAS2A315lhsAdgA7Vq5cWdUPpdHP1PTPMzf1uEeh0m1HraoIdDJTL5UE/1BG8jKztwLr3P3y1PPLgLPdfUOh91R7JK9qjshlZlVbFwQpkUdHR6u2PmlMGhXuBRr5rDYacSSvPcDZZtZpQWrH84Gfh7RtAFauXJl3fltb5R9Btf+BDxw4oIyOEVDoNxhF2SOfmRlLly7V/0DIQgn+7v5j4BZgF3BvarsjYWw7bXh4eFaK4s7OTt7znveEWYy8JicnGRgY0I+/xeX7DUrgwIEDMw4Gb3zjG+tdpNZXbv1Q2FMYvX3SdbSN0utH3TxbX1TSSlRrUltYZWi0Bt+5TFG8w1c3eEVH7olIV1dX3X9/jTypR1F5Kgn+kR3JK5lM0t3djZnR19fXEA1xqhOOjt7eXkZHR5menmZ0dJTrr79eVUJFZLcRbNhQsJ+IVCBywT8d9Pv6+picnKx3cTI6OzsZHh6udzGkTnKHv4zFYnPqjBAF1113ndoFqiBSv670+LyNEvTb29uLjocr0ZJ9NTAxMcHWrVt1NVDEt7/97RnjIOuKoDItG/yTySQ9PT20tbXR09PDhg0b6O/vZ2pqqt5Fy5iens5c9ivwS658VwOxWCzzWGZKXxEsWrRIPefKEMpNXnMxn5u80mf4jRTo84nFYkxMTNS7GNKkuru7G+YqtpEtWLCAL3/5y5E4wWrEm7xCNTQ0VJfAH9y/Vr5nnnlGZygyZ5s2bVK1UBmef/75GfcQ9PT06P+OFg3+e/bsqct2K72KOnToEENDQzUqjbS6WjUSV3oS02xy7y6OantBSwb/ZuoyWa8DlbSGchuJY7EYXV1dBddjZgwODuLubNu2jXg8npkfBen2gkjdYVzuDQFhT/O5yavR0zdnT7qrV6qt0J3shf4vYrFYyYyk+dYVpTuV29vbmyJLKbrDt/bjsVbjjuCwcs+LpFU7BXa+9RU7MCxZssQ7OjrqHsznOzXqoDYK/lmqfRXQ1taW+WGXcwBob2/3WCyWOQilH+t2dYmq3APG4OBg019FdHR0NMT/s4J/lkb4UcVisboNOCLSTHKvGtra2jL/Q7lX7+nqqkQiUfUr+2pMp5xySuifn4J/SiKRqPsPIN+k6h6R2mjUUdPCqiaqJPi3ZG+ftLl0owyjd8PU1JS6eIrUQLr3k7uTSCQa5k7o7FQUCxYsaIiupS0d/OfSjXIuwX8u71EXT5Ha6u3tZWJiYtYZb+5BIRaLMTg4GFq5jhw5wnXXXVf37qQtHfzL6e8/ODg4o1/09PR0RdswM84777wZN9osWbIk83qhm26a6V4EkVaSe1CYmJjg2muvnXFwSN/nUEvpq4G63XFcbv1Q2FO16vwXLlwYah1+Ob2LVOcv0hzCup+hWjEBNfi+IKyeAOmbtQo1NrW3t6u3j0gLqFWjcjV6BVYS/Fsyq2c+tW7INTOmp6dpa2sj32eafl1EWksymWRoaIixsbGqrrezs7PicT4in9Uzn1rX4aXr8AvV5S9btqym2xeR+sjtYVStWFPrXoEtH/zTg7pU66gci8Xo6OiYMS97CMbh4WEWLlw4631K3yzS+nIPBPNNuV3LXoEtHfzTg7pUI/B3dnaSSCSYmJhg8+bNM7qKLV68OPO4t7eXF73oRbPer/TNItGSm3I7Ho/P6l1YSk17BZbbOBD2VI0G3/k0yhTLw5OvR092a32hnD9mNu99EpHmlpvbqFBvIjOruNEX9fYJzCXzZvo97e3tmV482d04ix1QSvX4UfpmEcmV72TSzOaUQlrBP6WcbpeDg4OZ5QodLDo7O31wcLBk//30mX2pKwMRkWzVSrWt4J9S7uAViUQic6ZfaCr1eu6ZfbXzpouIlFJJ8F9QokmgqaX7x27cuJHJycnM/MnJSQYGBjLPBwYGOHLkSNF1lXo9u8dPetuV9M8VEQlTSwd/CILwxo0bZ83P7kM7NTU17+1k9/gREWl0LR/8k8nkjLP+bNW8Iy/7akJn/CLS6ELp529mrzCz3VnT02b2gTC2HWbfeuXpF5FmEcqZv7v/AlgNYGbtwF7gtjC2HXbefOXpF5FmUI87fM8HHnL36mZBKqDSO+Ta29tD3Z6ISD3UI/hfCtyY7wUzGzCzHWa2Y//+/VXZ2PDwcEW3Uxfr1VNqSLjcHj8iIo0q1OBvZh3ARcA/5Hvd3Ufcfa27r12+fHlVtpnOr1FoRK08Zcw7Px6Ps2nTplkHkvTy8Xi84vSrIiL1UjQimllbmVO5yfLfBOxy98fmX/Ty9fb2lp1L393zBvixsTGGhobo7++fkahp27ZtuDujo6MK/CLSNEqdDh8uY3oeOFDm9v6EAlU+jSSdiQ+CwB/cOBd0Dd2yZQvDw8NMT08r4ItI0yo6kpeZHQBOLbUOYLe7H110IbNO4BHgRHf/damCVXskr+7u7oL9/bPFYjEmJiYACo4DEI/HGR0drVrZRESqoZojef0fdx8rMY0Cf1tqQ+4+5e6xcgJ/LWzatCnvICvZOjo62LRpU+Z5oW6b6s4pIs2uaPB39yvNrGRLqbt/snpFqo3e3l5uuOGGWQMrZD/fvHnzjGqcQt021Z1TRJpdyQHczWwfsA3Y6u73hVIqql/tMxfpkcCyc//MZVBlEZEwVHsA9/cCJwB3m9kuM9toZtXph9kANmzYwIIFCzAzFixYwIYNGzKv5RuGTYFfRFpByTP/zIJmRwNvB94JrAW+BWwBvu7uh6tdsDDO/Dds2MB11103a/7g4CDXXnttTbctIlJt1T7zB8Ddn3L3L7j7a4GTgR3A54B9cytm7SSTSXp6emhra6Onp4dkMpl3uZGRkYrmi4i0iorv8DWzo4CzgN8FjgHurXah5iNdTz82Noa7MzY2xsDAQOYAkH1gKJTKodTALSIiza7srJ5m9lrgMuBtwOMEjcAbwkrQVq6hoaFZg7Nkp1rObcDNp9xUECIizapklDOzK83sIeCfUrMudPeXu/unGi3wQ/G++fkODPmYWcGqIhGRVlDOKe7ZwBCwwt0H3P2HNS7TvBTrm1/uzVlHjhzRoCwi0tLKuYFrnbvf5O4HzWyhmb3OzN4OYGZLzGxJ7YtZvnwpnNOplpctW1b2enQXr4i0srIrt83sNOA/gb8HvpSa/Xpgcw3KNWfV6puvu3hFpJVVMozjdcDH3X2bmT2Zmvc9goNBQ+nt7Z0V7IsN5J5Lg7KISKurpFvLqUAi9dgB3P1ZYHG1C1Vt6e6fhcRiMd3FKyKRUsmZ/yiwhuDmLgDM7NXAg1UuU9WV08tneHhYAV9EIqOS4P8x4Btmdj3QYWZ/RZD3589rUrIqKtV4Ozk5mbky0AFARKKgkvQO/0wwDONygrr+OPAWd/9WjcpWNeU03k5NTdHf318yJYSISCuo6FZWd9/l7hvc/UJ3f6+776xVwaopX/fPfI4cOZI3JYSISKspJ5//x0utpBaDuVQ7q2cymWRoaIg9e/YUzeuTTcM1ikgzqSSrZznBfxr4BXA3wXi9udzdL6u4lCXUMqVzvkFa8jEzpqena1IGEZFqqyT4l9Pg+z95IYf/FiDh7nvnUb66SzfqlroS0I1eItKqyknv8Hfuvgb4Y2AZ8CMzu8PM+lLpnZve0UcfPWtwd93oJSKtrJLePj9z948ALwV+AnwZOKdG5aqp3Jz/k5OTmBmxWEw3eolIJFSSz/9koB+4FHgIuBz4UY3KVVP5bvo6dOgQXV1dTExM1KlUIiLhKSef//vM7G7gFuAp4HXufr67b3H3gzUv4RwVG8qxWM5/EZEoKOfM//MEvX12AKcAw2YzO/3UorfPfOT25kn324egsXflypWMjc0eh0YNvCISFeXU+X8SuIkgh89DBaaGUmoox3w3fZkZ69evD62MIiL1VPLM392vDKEcVVWo+mZsbIyenh727NkzK/i7O1u2bOGcc85RQ6+ItLyiZ/5m9opyVlLucmEpVH1jZpkePs8+++ys17OvDkREWlmpap+7y1zPv8+3INWSTCY5cODArPlmRqm7mUGNviISDaWqfTrN7PtlrKej1AJmdjTwReBVBIPB/Jm7V/WgUShtQywWK3sULzX6ikgUlAr+l5e5npEyltkE/Iu7/7GZdQCl02xWqNCgLV1dXXR1deXt4ZNNd/WKSFQUDf7uvqUaGzGzFwHnAu9KrfcQcKga685WrP/+tm3bZl0VdHR0sHDhwkz9/+LFDT8ipYhIVVSUz38eTgT2AzeY2U/M7ItmtiR3ITMbMLMdZrZj//79FW+kUJXNypUr6e3tZWRkZMZYvZdffvmMdoD0iF7K4y8ira5kSueqbMRsLXAXcI67/9jMNgFPu/vHCr1nLimd89X5d3Z2FszT09PTk7cqSHn8RaQZVZLSOawz/3Fg3N1/nHp+C3BmtTeS7+y+WII2pXkQkaiaV/A3s982sw2llnP3XwGPZN0PcD7ws/lsu5De3l5GR0eZnp5mdHS06A1bxaqJRERaWcXB38zazewiM7sF2AcMlvnW/wEkzeynwGrgf1e67Wpbv349uXmK1ONHRKKg7OBvZmea2d8BjwIJ4A+At7r7aeW83913u/tadz/d3f/Q3Z+cW5ErUyi7ZzKZZMuWLTMafM2M/v5+pXcQkZZXMrePmf0FQR7/lwHfAjYCXydI6PbjIm+tu2LZPfPdE+Du3H777aGXU0QkbOUO4D4JXAH8g6feYGb7gFXu/ngtClaNAdyL9ebZs2dP3nQPGrRdRJpVtXv7nAf8E0FqhnEz+6yZrSFI0dDQivXmUWOviERZOQO4f9fd/ww4BvgocDpBdc8xwHvMLFbbIs5dsQCfL6e/GntFJCoqGcD9OXff5u4XACcAHwPeATxSq8LNV7EAX+k9ASIiraScOv93A7e7+6MFXv/drJu3qqYadf4QNPoODQ1lqnrSgV9EpNVUUudfTvD/ArAOeBL4BnA78COvcV6IagV/EZGoqGqDr7u/x93jwDuBp4GrgF+Z2VfMrM/MuudXXBERCVsldf73uvvV7n4u8HJgO3AB8FMzu8vMfr9WhRQRkeoqeZNXPu7+a+CrqQkzO6uahRIRkdoqeeZvZp/PeX55zvNb3f1udy93vF8REamzcqp93pXz/Jqc5xdUpygiIhKWcoK/lXguIiJNppzgn9uls+HTOoiISHHlNPguMLM38MIZf+7z9pqUTEREaqac4P84sDnr+WTO85pk9RQRkdop5yavHnc/odgURkErUWgAFxERCcypn38jKzaAi3L6iIgE5jWAeyPKN0LX1NQUQ0NDdSqRiEjjabngX2wAFxERCbRc8NcIXSIipbVc8NcIXSIipbVc8NcIXSIipZUczKVeNJiLiEhlqjqYi4iItB4FfxGRCFLwFxGJIAV/EZEIUvAXEYmg0HL7mNko8AxwBHi+3BZpERGpvrATu73B3SdC3qaIiORQtY+ISASFGfwd+JaZ7TSzgRC3KyIiOcKs9jnH3R81sxcDd5jZA+7+/ewFUgeFAVAiNhGRWgrtzN/dH039fRy4DXh1nmVG3H2tu69dvnz5vLan0bxERAoLJfib2RIzW5p+DPwecF+ttpcezWtsbAx3z4zmpQOAiEggrDP/Y4AfmNk9wH8A33D3f6nVxjSal4hIcaHU+bv7L4FVYWwLNJqXiEgpLdnVU6N5iYgU15LBX6N5iYgU15LBX6N5iYgUp5G8RERahEbyEhGRohT8RUQiSMFfRCSCFPxFRCJIwV9EJIIU/EVEIkjBX0QkghT8RUQiSMFfRCSCFPxFRCJIwV9EJIIU/EVEIkjBX0Qkgloq+GvQdhGR8oQyjGMY0oO2p8fuTQ/aDiiPv4hIjpY589eg7SIi5WuZ4K9B20VEytcywV+DtouIlK9lgr8GbRcRKV/LBH8N2i4iUj4N4C4i0iI0gLuIiBSl4C8iEkEK/iIiEaTgLyISQaEGfzNrN7OfmNk/h7ldERGZKewz/43Az0PepoiI5Agt+JvZ8cCFwBfD2qaIiOQX5pn/3wEfBqZD3KaIiOQRSvA3szcDj7v7zhLLDZjZDjPbsX///jCKJiISSWGd+Z8DXGRmo8BNwHlmlshdyN1H3H2tu69dvnx5SEUTEYmeUIK/u/+Vux/v7j3ApcCd7t4XxrZFRGQ29fMXEYmg0IdxdPfvAt8Ne7siIvICnfmLiESQgr+ISAQp+IuIRJCCv4hIBCn4i4hEUMsF/2QySU9PD21tbfT09JBMJutdJBGRhhN6V89aSiaTDAwMMDU1BcDY2BgDAwMAGshdRCRLS535Dw0NZQJ/2tTUFENDQ3UqkYhIY2qp4L9nz56K5ouIRFVLBf+VK1dWNF9EJKpaKvgPDw/T2dk5Y15nZyfDw8N1KpGISGNqqeDf29vLyMgI8XgcMyMejzMyMqLGXhGRHObu9S5DXmvXrvUdO3bUuxgiIk3DzHa6+9pylm2pM38RESmPgr+ISAQp+IuIRJCCv4hIBCn4i4hEkIK/iEgENWxXTzPbD4xlzeoGJupUnHqI0v5qX1tXlPa3EfY17u7Ly1mwYYN/LjPbUW7/1VYQpf3VvrauKO1vs+2rqn1ERCJIwV9EJIKaKfiP1LsAIYvS/mpfW1eU9rep9rVp6vxFRKR6munMX0REqqQpgr+ZrTOzX5jZg2b20XqXp9rMbNTM7jWz3Wa2IzVvmZndYWb/lfr72/Uu51yZ2WYze9zM7sual3f/LPD51Hf9UzM7s34lr1yBfb3SzPamvt/dZrY+67W/Su3rL8zs9+tT6rkxs5eY2XfM7Odmdr+ZbUzNb9XvttD+Nuf36+4NPQHtwEPAiUAHcA9wSr3LVeV9HAW6c+Z9Bvho6vFHgavrXc557N+5wJnAfaX2D1gPfBMw4Gzgx/UufxX29UrgL/Ise0rq93wUcELqd95e732oYF9XAGemHi8F/jO1T6363Rba36b8fpvhzP/VwIPu/kt3PwTcBFxc5zKF4WJgS+rxFuAP61iWeXH37wNP5MwutH8XA1s9cBdwtJmtCKek81dgXwu5GLjJ3X/j7g8DDxL83puCu+9z912px88APweOo3W/20L7W0hDf7/NEPyPAx7Jej5O8Q+8GTnwLTPbaWYDqXnHuPs+CH50wIvrVrraKLR/rfp9vy9V1bE5qwqvZfbVzHqAM4AfE4HvNmd/oQm/32YI/pZnXqt1UTrH3c8E3gRcYWbn1rtAddSK3/d1wEuB1cA+4LOp+S2D/4hgAAAFn0lEQVSxr2bWBdwKfMDdny62aJ55rbC/Tfn9NkPwHwdekvX8eODROpWlJtz90dTfx4HbCC4NH0tfEqf+Pl6/EtZEof1rue/b3R9z9yPuPg38PS9c+jf9vprZQoJAmHT3f0zNbtnvNt/+Nuv32wzB/27gZWZ2gpl1AJcCX69zmarGzJaY2dL0Y+D3gPsI9rE/tVg/8LX6lLBmCu3f14HLUj1DzgZ+na5CaFY59dqXEHy/EOzrpWZ2lJmdALwM+I+wyzdXZmbAl4Cfu/vfZr3Ukt9tof1t2u+33i3OZbayrydoWX8IGKp3eaq8bycS9Ai4B7g/vX9ADPg28F+pv8vqXdZ57OONBJfDhwnOhi4vtH8El8r/L/Vd3wusrXf5q7Cv21L78lOCgLAia/mh1L7+AnhTvctf4b6+lqAa46fA7tS0voW/20L725Tfr+7wFRGJoGao9hERkSpT8BcRiSAFfxGRCFLwFxGJIAV/EZEIUvAXCVEqA2Si3uUQUfCXukmlsj5kZt0583ebmafyp8gcpA4ybmYNk0hMGouCv9Tbw8CfpJ+Y2WnA4voVp3mY2YIC8w14J0F20f58y4go+Eu9bQMuy3reD2zNXsDMLjSzn5jZ02b2iJldmfXaIjNLmNmkmT1lZneb2TGp195lZr80s2fM7GEz681XgNRZ8lfNbGtq2fvNbG3W625mJ2U9/7KZ/a/U4/9uZuNm9mELBnHZZ2Z/aGbrzew/zewJM/vrnE0uMrObU9vaZWarstZ9rJndamb7U2V+f045b0nt79PAuwp8pq8DjgU2EqQX6CiwnESYgr/U213Ai8zsZDNrB94O5NaJP0twgDgauBAYNLN0jvh+4LcIEmjFgPcCz6XyJH2e4Jb6pcB/I7gdv5CLCMaKOJrgFv3/W8E+/A6wiCBd78cJknv1AWsIAvHHzezErOUvBv4BWAZ8BdhuZgvNrA34J4JUH8cB5wMfyBkB6mLgllQ5kwXK059az82p52+uYF8kIhT8pRGkz/4vAB4A9ma/6O7fdfd73X3a3X9KkD/n9amXDxME/ZM8yKy4019IKzwNvMrMFnswEMf9RcrwA3e/3d2PpMqzqsiyuQ4Dw+5+mOAA0g1scvdnUtu8Hzg9a/md7n5Lavm/JThwnA2cBSx390+6+yF3/yXBgeTSrPf+u7tvT30Wz+UWxMw6gbcCX0mt/xZU9SN5KPhLI9gGvIOgGmNr7otm9rsWjJ2638x+TXB235313n8FbjKzR83sM2a20N2fJbiKeC+wz8y+YWavLFKGX2U9niKomslbp57HZOqgAZAOyI9lvf4c0JX1PDPAhwdpgMcJqmniwLGp6qunzOwp4K+BY/K9t4BLgOeB21PPk8CbzGx5mfsiEaHgL3Xn7mMEDb/rgX/Ms8hXCKpiXuLuvwVcT2qgDHc/7O5/4+6nEFTtvJlUG4K7/6u7X0Aw9uoDBGfRczEFdGY9/505rictk+M9VdWTzvP+CPCwux+dNS119/VZ7y2VibGf4ECzx8x+RVC9tJCsRnURUPCXxnE5cF7qjD3XUuAJdz+Y6rr4jvQLZvYGMzst1V7wNEEVzBEzO8bMLkrV/f8GOAAcybPucuwG3mFm7Wa2jheqnOZqjZm9JXVl8YFU+e4iyPX+tJl9xMwWp7b3KjM7q5yVmlm6neDNBKNKrSaovroaVf1IDgV/aQju/pC77yjw8gbgk2b2DEGD6lezXvsdgnrtpwkG1P4eQYNxG/AhgjPqJwgC9oY5Fm8j8AfAU0AvsH2O60n7GkGV1JMEXTLfkrqCOZLazmqCK6EJ4IsEDdrleCew292/5e6/Sk8EDd+nm9mr5lluaSHK5y8iEkE68xcRiSAFfxGRCFLwFxGJIAV/EZEIUvAXEYkgBX8RkQhS8BcRiSAFfxGRCFLwFxGJoP8PZB0S+YNb0HEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(df['A'],df['BE']/df['A'],c='k')\n", "plt.xlabel('Mass number A',fontsize=12)\n", "plt.ylabel('E/A [MeV]',fontsize=12)\n", "plt.legend(['AME2003'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**References**:\n", "\n", "- NNDC: https://www.nndc.bnl.gov/nudat2/chartNuc.jsp \n", "- AME2003: A.H.Wapstra, G.Audi, C. Thibault, [Nuclear Physics A729, 129-336 (2003)](https://www.sciencedirect.com/science/article/pii/S0375947403018086)\n", "\n", "- NUBASE2016: [Chinese Physics C Vol. 41, No. 3 (2017) 030001](http://cpc.ihep.ac.cn/article/2017/3)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }