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Introduction

A two-body Hamiltonian of a system of fermions can be expressed in terms of a set of
annihilation and creation operators (c†l , cl )

H =
∑
l1 l2

tl1 l2 c†l1 cl2 +
1
4

∑
l1 l2 l3 l4

v̄l1 l2 l3 l4 c†l1 c†l2 cl4 cl3 , (1)

where the anti-symmetrized two-body interaction matrix-elements are defined as

v̄l1 l2 l3 l4 = 〈l1l2|v |l3l4〉 − 〈l1l2|v |l4l3〉. (2)
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Introduction

In the Hartree-Fock-Bogoliubov (HFB) method, the ground-state wave function is de-
fined as a quasiparticle vacuum

|Φ(q)〉 =
M∏

k=1

βk (q) |0〉 , βk (q) |Φ(q)〉 = 0, (3)

where |0〉 denotes the particle vacuum.

The (βk , β
†
k ) are quasiparticle creation and annihilation operators.
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The Bogoliubov transformation

The quasiparticle operators (βk , β
†
k ) are connected to the particle operators (cl , c

†
l ) via

a linear Bogoliubov transformation

β†k = Ulk c†l + Vlk cl , (4)

βk = U∗lk cl + V∗lk c†l , (5)

namely,  β†k

βk

 =W†
 c†l

cl

 (6)

The unitary transformation matrixW† is defined by

W† =

 UT V T

V † U†

 , (7)

satisfying the condition,

WW† =W†W = 1. (8)
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The Bogoliubov transformation

namely the matrix U and V satisfy the following relations: V †V + U†U = 1,

UT V + V T U = 0,
(9)

and  UU† + V∗V T = 1,

UV † + V∗UT = 0.
(10)

The inverse transformation of (4) is c†l
cl

 =W

 β†k

βk

 , W =

 U∗ V

V∗ U

 . (11)

where

c†l = U∗lkβ
†
k + Vlkβk , (12)

cl = V∗lkβ
†
k + Ulkβk . (13)
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The Bogoliubov transformation

Homework 1: Prove that the quasiparticle operators defined in (4) satisfy the following
relations:

{β†k , βk′} = δkk′ , {β
†
k , β
†
k′} = {βk , βk′} = 0. (14)
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The H in the quasiparticle representation
Applying transformation (11) to the one-body operator∑

l1 l2

tl1 l2 c†l1 cl2 =
∑
l1 l2

tl1 l2

[
U∗l1k1

Ul2k2β
†
k1
βk2 + Vl1k1 V∗l2k2

βk1β
†
k2

+U∗l1k1
V∗l2k2

β
†
k1
β
†
k2

+ Vl1k1 Ul2k2βk1βk2

]
=

∑
l1 l2

tl1 l2

[
Vl1k1 V∗l2k2

δk1k2 + (U∗l1k1
Ul2k2 − Vl1k2 V∗l2k1

)β†k1
βk2

+
1
2

(U∗l1k1
V∗l2k2

− U∗l1k2
V∗l2k1

)β†k1
β
†
k2

+
1
2

(Ul1k1 Vl2k2 − Ul1k2 Vl2k1 )βk2βk1

]
= T 0 +

∑
k1k2

T 11
k1k2

β
†
k1
βk2 +

1
2

∑
k1k2

[
T 20

k1k2
β
†
k1
β
†
k2

+ h.c.
]

(15)

where,

T 0 =
∑
l1 l2

tl1 l2 Vl1k1 V∗l2k2
δk1k2 = Tr(tV∗V T ), (16)

T 11
k1k2

=
∑
l1 l2

tl1 l2 (U∗l1k1
Ul2k2 − Vl1k2 V∗l2k1

) = (U†tU − V †tT V )k1k2 , (17)

T 20
k1k2

=
∑
l1 l2

tl1 l2 (U∗l1k1
V∗l2k2

− U∗l1k2
V∗l2k1

) = (U†tV∗ − V †tT U∗)k1k2 . (18)
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The H in the quasiparticle representation

H =
∑
l1 l2

tl1 l2 c†l1 cl2 +
1
4

∑
l1 l2 l3 l4

v̄l1 l2 l3 l4 c†l1 c†l2 cl4 cl3

= H0 +
∑
k1k2

H11
k1k2

β†k1
βk2 +

1
2

∑
k1k2

[
H20

k1k2
β†k1

β†k2
+ h.c.

]
+

∑
k1k2k3k4

H40
k1k2k3k4

β†k1
β†k2

β†k4
β†k3

+ h.c.

+
∑

k1k2k3k4

H31
k1k2k3k4

β†k1
β†k2

β†k3
βk4 + h.c.

+
1
4

∑
k1k2k3k4

H22
k1k2k3k4

β†k1
β†k2

βk4βk3 (19)

where,

H0 = Tr

(
tρ+

1
2

Γρ−
1
2

∆κ∗
)

= Tr(tρ) +
1
2

Tr(ρv̄ρ) +
1
4

Tr (κ∗v̄κ)

H11 = U+hU − V +hT V + U+∆V∗ − V +∆∗U

H20 = U+hV∗ − V +hT U∗ + U+∆U∗ − V +∆∗V∗
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The H in the quasiparticle representation

The density matrices

In the above expressions, we introduce density matrices in the particle basis

ρll′ =
〈
Φ
∣∣c+

l′ cl
∣∣Φ
〉
, κll′ = 〈Φ |cl′cl |Φ〉 , κ∗ll′ =

〈
Φ
∣∣∣c†l c†l′

∣∣∣Φ
〉

or in matrix notation
ρ = V∗V T , κ = V∗U r = −UV +,

ρ is hermitian
(
ρ+ = ρ

)
and κ is skew symmetric

(
κT = −κ

)
.

The single-particle matrix elements

We also introduce the mean-field matrix elements:

h = t + Γ

Γlm =
∑
pq

v̄lqmpρpq := Tr(v̄ρ)

∆lm =
1
2

∑
pq

v̄lmpqκpq := −
1
2

Tr(v̄κ)
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The H in the quasiparticle representation

The following quasiparticle interacting terms are usually negligible:

H40
k1k2k3k4

= 1
4
∑

l1 l2 l3 l4

v̄l1 l2 l3 l4 U∗l1k1
U∗l2k2

V∗l3k3
V∗l4k4

,

H31
k1k2k3k4

= 1
2
∑

l1 l2 l3 l4

v̄l1 l2 l3 l4

[
U∗l1k1

U∗l2k2
V∗l4k4

Ul3k3 + U∗l1k1
Vl2k3 V∗l4k2

V∗l3k4

]
,

H22
k1k2k3k4

=
∑

l1 l2 l3 l4

v̄l1 l2 l3 l4

[
U∗l1k1

U∗l2k2
Ul4k4 Ul3k3 + Vl1k4 Vl2k3 V∗l4k2

V∗l3k2

+U∗l1k1
Vl2k4 Ul4k3 V∗l3k2

+ V∗l1k4
U∗l2k1

V∗l4k2
Ul3k3

−U∗l1k1
Vl2k2 V∗l4k2

Ul3k3 − Vl1k4 U∗l2k1
Ul4k3 V∗l3k2

]
.
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The H in the quasiparticle representation

Thus, the Hamiltonian in quasi-particle representation is

H ' H0 +
∑
k1k2

H11
k1k2

β†k1
βk2 +

1
2

∑
k1k2

[
H20

k1k2
β†k1

β†k2
+ h.c.

]
(20)

The HFB equation is to find the matrixW which diagonalizes the H11 and drives H20 =
0, in which case, one has

H ' H0 +
∑

k

Ekβ
†
kβk , (21)

where Ek is the so-called quasiparticle energy.
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The HFB equation

Starting from the variational principle

δ
〈Φ|H|Φ〉
〈Φ | Φ〉

= 0, H = H0 − λN

According to Thouless theorem, one can express the function |Φ′〉 = |Φ〉+ |δΦ〉 as

∣∣Φ′〉 = exp

∑
k<k′

Zkk′β
+
k β

+
k′

 |Φ〉
which is not orthogonal to |Φ〉.
The variables Zkk′ (withk < k ′) are independent variables.
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The HFB equation

We write the H as

H = E0 +
∑
k1k2

H11
k1k2

β+
k1
βk2 +

∑
k1<k2

(
H20

k1k2
β+

k1
β+

k2
+ h.c.

)
+ Hint

where

〈Φ′|H|Φ′〉
〈Φ′ | Φ′〉

= H0 +
(

H20∗H20
) Z

Z∗

+
1
2

(Z∗Z )

 A B

B∗ A∗

 Z

Z∗


where the index of the vectors and matrices runs over all pairs (k < k ) and

H0 = 〈Φ|H|Φ〉, Akk′ ll′ =
〈
Φ
∣∣[βk′βk ,

[
H, βl

+βl′
+
]]∣∣Φ

〉
H20

kk′ = 〈Φ |[βk′βk ,H]|Φ〉 , Bkk′ ll′ = −〈Φ |[βk′βk , [H, βl′βl ]]|Φ〉

The variation principle leads to

∂

∂Z∗kk′

〈Φ′|H|Φ′〉
〈Φ′ | Φ′〉

∣∣∣∣∣
z=0

= H20
kk′ = 0
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The HFB equation

Therefore, the variational equation, together with the diagonalization of the H11, is equiv-
alent to diagonalize the following matrix

K =

 H11 H20

−H20∗ −H11∗

 =

 〈
Φ
∣∣{[βk ,H] , β+

k′
}∣∣Φ

〉
〈Φ |{[βk ,H] , βk′}|Φ〉〈

Φ
∣∣{[β+

k ,H
]
, β+

k′
}∣∣Φ

〉 〈
Φ
∣∣{[β+

k ,H
]
, βk′

}∣∣Φ
〉


In the space of the basis operators cl , c+
l this matrix has the form

hHFB ≡ WKW† =W

 H11 H20

−H20∗ −H11∗

W† =

 h − λ ∆

−∆∗ −h∗ − λ


with

hlI′ =
〈
Φ
∣∣{[cl ,H] , c+

l′
}∣∣Φ

〉
, ∆ll′ = 〈Φ |{[cl ,H] , cl′}|Φ〉

Applying Wick’s theorem,

h = t + Γ; Γll′ =
∑
qq′

v̄lq′I′qρqq′ ; ∆ll′ =
1
2

∑
qq′

v̄ll′qq′κqq′
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The HFB equation

Diagonalizing the matrix HHFB leads to the HFB equation h − λ ∆

−∆∗ −h∗ − λ

 Uk

Vk

 = Ek

 Uk

Vk


where the columns Uk ,Vk of the matrices U and V determine the quasi-particle operator
β+

k . The value of λ is determined to ensure the conservation of particle number.
Note: the above equation produces 2M eigenvalues, where

the M eigenvalues of Ek and HFB wave functions (U,V )

the M eigenvalues of −Ek and HFB wave functions (V∗,U∗)
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The HFB equation (alternative way to detive)

Using the Wick theorem,

Ĥ = Ĥ0 − λN̂ =
∑
k1k2

(tk1
k2
− λδk1

k2
)Ak1

k2
+

1
4

∑
k1k2k3k4

v̄k1k2
k3k4

Ak1k2
k3k4

where Ak1
k2
≡ c†k1

ck2 . According to the Wick theorem, one can write the operators in
terms of normal-ordered ones

Ak1
k2

= {Ak1
k2
}+ 〈Φ|Ak1

k2
|Φ〉,

Ak1k2
k3k4

= {Ak1k2
k3k4
}+ (1− P̂12)(1− P̂34){Ak1

k3
}〈Φ|Ak2

k4
|Φ〉+ (1− P̂34)〈Φ|Ak1

k3
|Φ〉〈Φ|Ak2

k4
|Φ〉

+ {Ak1k2}〈Φ|Ak3k4 |Φ〉+ {Ak3k4}〈Φ|A
k1k2 |Φ〉

Using the definitions for Γ and ∆, we immediately find

H = E0 +
1
2

{(
c+, c

) h − λ ∆

−∆∗ −h∗ − λ

 c

c+

}+
1
4

∑
k1k2k3k4

Γ
k1k2
k3k4
{Ak1k2

k3k4
}
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The HFB equation (alternative way to derive)

The second term can be rewritten by transforming the single-particle basis (c†, c) into
quasiparticle (β†, β) representation via the Bogoliubov transformation (U,V ), which
transform it into the following form

1
2

{(
c+, c

) h − λ ∆

−∆∗ −h∗ − λ

 c

c+

} =
∑

k

Ek{β†kβk}.

It is equivalent to the following eigenvalue problem, h − λ ∆

−∆∗ −h∗ − λ

 Uk

Vk

 = Ek

 Uk

Vk

 ,

where the Bogoliubov transformation was introduced before as follows

c†l = U∗lkβ
†
k + Vlkβk , (22)

cl = V∗lkβ
†
k + Ulkβk . (23)
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The HFB in canonical basis
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Decomposition of the Bogoliubov transformation

Theorem of Bloch and Messiah
A unitary matrix of the formW can always be decomposed into three matrices of very
special form:

W ≡

 U V∗

V U∗

 =

D 0

0 D∗

Ū V̄

V̄ Ū

C 0

0 C∗

 (24)

or
U = DŪC, V = D∗V̄C
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Decomposition of the Bogoliubov transformation

1 The D transformation among single-particle operators (c†l , cl ): which diagonalizes
the one-body density ρ

a†k =
∑

l

Dlk c†l (25)

The new basis defined by {a†k , ak} is called canonical basis.

2 The special Bogoliubov transformation defined by Ū, V̄ , which mixes the creation
and annihilation operators of "paired" levels (up > 0, vp > 0),

α+
p = upa+

p − vpap̄

α+
p̄ = upa+

p̄ + vpap
(26)

3 The C transformation among quasi-particle operators (α†k , αk ):

β†k =
∑
k′

Ck′kα
†
k′ . (27)
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The constraint HFB calculation

J. M. Yao SPA/SYSU Nuclear Theory 26 / 39



Introduction The Bogoliubov transformation Quasiparticle representation The HFB equation The HFB in canonical basis The constraint HFB calculation The multi-quasiparticle states The temperature-dependent HFB in rotating frame

The HFB equation with constraints

Unrestricted HF/HFB calculations give only one point on the energy surface, i.e.,
the local minimum.

The energy surface (energy as a function of collective parameter, like deformation
parameters) can be obtained by imposing certain subsidiary conditions.

The Hamiltonian becomes
H′ = H − λQ (28)

where Q is a certain single-particle operator with a fixed expectation value,

〈Φ|Q|Φ〉 = q. (29)

The Lagrange multiplier is the derivative of the energy with respect to q,

λ =
dE
dq

. (30)
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The HFB equation with constraints

The linear constraint works as long as the function E(q) has a positive second
derivative. it does not work in the cases where the curve is downwards.
The use of a quadratic constraint can avoid the above problem

H′ = H − λ(Q − q)2 (31)
from which one finds the variation of energy

δ〈H′〉 = δ〈H〉 − λ(Q − q)δ〈Q〉 = 0

The constraint term is changing automatically during the iteration.
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The HFB equation with constraints
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The HFB equation with constraints
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The multi-quasiparticle states
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The even-even nuclei

The HFB wave function of an even-even nucleus is simply the quasiparticle vacuum

|Φ0〉 =
M∏

k=1

βk |0〉 = β1β2 . . . βM |0〉 (32)

with even number parity. It means that

βk |Φ0〉 = 0, k = 1, 2, . · · ·M

The exact wave function of an even-even nucleus can be expanded in terms of the
following basis:

|Φ0〉 , β†kβ
†
k′ |Φ0〉 , β†kβ

†
k′
β†

k′′
β†

k′′′
|Φ0〉 , · · ·
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The odd-mass nuclei

For odd-mass nuclei, we have to make sure that we use coefficients U and V which
guarantee odd number parity for the wave function |Φ1〉 that is, |Φ1〉 can be written as a
one quasi-particle state based on a properly chosen ground state |Φ0〉
The one-quasi-particle state

|Φ1〉 = β+
1 |Φ0〉

is a vacuum to the operators
(
β̃1, β̃2, . . . , β̃M

)
with

β̃1 = β+
1 , β̃2 = β2, . . . , β̃M = βM

The exchange of a quasi-particle creation operator β+
1 with the corresponding annihila-

tion operator β1 means that we have replaced columns 1 in the matrices U and V by
the corresponding columns in the matrices V∗,U∗:

(Ul1,Vl1)↔ (V∗l1,U
∗
l1)

Thus by making such a replacement we change the number parity of the corresponding
vacuum and go over to a one-quasi-particle state.
The exact wave function of an even-odd nucleus can be expanded in terms of the fol-
lowing basis:

β†k |Φ0〉 , β†kβ
†
k′β
†
k′′
|Φ0〉 , · · ·

J. M. Yao SPA/SYSU Nuclear Theory 33 / 39



Introduction The Bogoliubov transformation Quasiparticle representation The HFB equation The HFB in canonical basis The constraint HFB calculation The multi-quasiparticle states The temperature-dependent HFB in rotating frame

The temperature-dependent HFB in rotating frame
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The temperature-dependent HFB in rotating frame

Egido, Ring, Mang, NPA451,77(1986)
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Homeworks

Homework 2: Compute the energy of one- and two- quasiparticle states.

〈Φ0|βk H0β
†
k |Φ0〉 =? (33)

〈Φ0|βlβk H0β
†
kβ
†
l |Φ0〉 =? (34)

where the Hamiltonian is approximated as

H = E0 +
∑

k

Ekβ
+
k βk .

家庭作业选做题: compute the expectation value of particle number operators for the
quasiparticle vacuum and one-quasiparticle states.

〈Φ0|N̂ |Φ0〉 =? (35)

〈Φ0|βk N̂β†k |Φ0〉 =? (36)

where the particle-number operator is defined as

N̂ =
∑

k

c†k ck

Hint: express the particle-number operator in terms of quasiparticle operators and then
use the commutation relations among quasiparticle operators and the following relation

βk |Φ0〉 = 0.
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