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Introduction

The Pygmy Dipole Resonance (PDR) might play an important role in nuclear
astrophysics.
The pygmy E1 strength provides information on the symmetry energy term of the
nuclear equation of state, relevant for the modeling of neutron stars. C. J. Horowitz
and J. Piekarewicz, PRL86, 5647 (2001).
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The Tamm-Dancoff approximation
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The Tamm-Dancoff approximation

The ground-state wave function

|Ψ0〉 = C0
0 |HF〉+

∑
mi

C0
mi a

+
mai |HF〉+

1
4

∑
mnij

C0
mn,ij a

+
ma+

n ai aj |HF〉+ · · ·

The excited-state wave function

|Ψν〉 = Cν0 |HF〉+
∑
mi

Cνmi a
+
mai |HF〉+

1
4

∑
mnij

Cv
mn,ij a

+
ma+

n ai aj |HF〉+ · · ·
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The Tamm-Dancoff approximation

The ground-state wave function

|Ψ0〉 ' C0
0 |HF〉

The excited-state wave function

|Ψν〉 '
∑
mi

Cνmi a
+
mai |HF〉

The ground state is still a HF state without many-body correlations. Correlations are only
taken into account in the excited states which are approximated as a linear combination
of 1p-1h excitation configurations.
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The Tamm-Dancoff approximation

The unknown coefficients in the excited-state wave function are determined by the
variational principles

|δν〉 =
∑
mi

a+
mai |HF〉δCνmi

which leads to the following eigenvalue equation∑
nj

{〈
HF
∣∣a+

i amHa+
n aj
∣∣HF

〉
− Eν

〈
HF
∣∣a+

i ama+
n aj
∣∣HF

〉}
Cνnj = 0

Namely, ∑
nj

〈
HF
∣∣a+

i am
[
H, a+

n aj
]∣∣HF

〉
Cνnj =

(
Eν − EHF

0

)
Cνmi

where[
H, a+

n aj
]

=
∑

r

(
trna+

r aj − tjr a+
n ar
)

+
1
2

∑
rst

v̄rsnt a+
r a+

s at aj −
1
2

∑
rst

v̄jrst a+
n a+

r at as

J. M. Yao SPA/SYSU Nuclear Theory 9 / 54



Introduction The Tamm-Dancoff approximation The particle-hole TDA The particle-particle TDA The Random-Phase-Approximation (RPA) The Linear Response Theory

The Tamm-Dancoff approximation

Substituting the single-particle energy

hkk′ = tkk′ +
A∑

i=1

v̄kik′ i = εkδkk′

the above equations becomes,

∑
nj

[
(εm − εi ) δmnδij + v̄mjin

]
Cνnj = ETDA

ν Cνmi

The ground-state energy EHF
0 has been set to zero by a suitable choice of the energy

scale and ETDA
ν is the excitation energy of |ν〉 in Tamm-Dancoff approximation (TDA).
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The particle-hole TDA
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A separable QQ interaction

The separable particle-hole residual interaction

v̄mjin = λ · Dmi D∗nj

Further, it is assumed that the Dmi are matrix elements of a multipole operator as,
for example, the quadrupole operator

Dmi =
〈

m
∣∣∣r2Y2µ

∣∣∣ i〉
The multipolarity agrees, of course, with the angular momentum to which the
particle-hole pair (m, i) is coupled. The matrix element is certainly not
antisymmetric as it should be. However, it turns out that the exchange term is
small and neglecting it is a good approximation.
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A separable ph interaction

With the ansatz, the secular equation has the following form.

(
ETDA
ν − εm + εi

)
Cνmi = λDmi

∑
nj

D∗nj C
ν
nj (1)

The states |ν〉 should be normalized. We therefore have:

∑
mi

Cν
∗

mi Cν′mi = δνν′

With
∑

nj D∗nj C
ν
nj = const., the coefficients Cνmi are determined by

Cνmi = N ·
Dmi

ETDA
ν − εm + εi

(2)

N−2 =
∑
mi

|Dmi |2

(ETDA
ν − εm + εi )

2 (3)
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A separable ph interaction

Multiplying (1) by D∗mi

(
ETDA

v − εm + εi
)−1 and summing over m, i , we obtain an eigen-

value equation for the excitation energies ETDA
ν :

1
λ

=
∑
mi

|Dmi |2

ETDA
ν − εmi

, εmi = εm − εi (4)

We can solve it graphically by plotting the r.h.s. as a function of ETDA
v . We thus obtain

the eigenvalues from the intersection of this function with the straight line 1/λ .
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A separable ph interaction

For the degenerate case εmi = ε. Substituting into (2) and (3), one finds

Cmi =

(∑
mi

|Dmi |2
)−1/2

· Dmi

and from (4)
ETDA

c = ε+ λ
∑
mi

|Dmi |2

which means the collective states are pushed up by the sum of all the diagonal
elements of the interaction.
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A separable ph interaction

The collective state

|νc〉 =

(∑
mi

|Dmi |2
)−1/2∑

mi

Dmi a+
mai |HF〉

from which one finds the transition probability of the operator D =
∑

kk′ Dkk′a
†
k ak′ ,

|〈νc |D|HF〉|2 =
∑
mi

|Dmi |2 .
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A separable ph interaction

The sum rule:∑
ν

|〈ν|D|HF〉|2 =
∑
ν 6=vc

· · ·+ |〈νc |D|HF〉|2

=
∑
ν

〈
HF
∣∣D+

∣∣ ν〉 〈ν|D|HF〉

=
∑
mi

〈
HF
∣∣D+

∣∣mi
〉
〈mi|D|HF〉 =

∑
mi

|Dmi |2 (5)

Here we replaced the complete set |ν〉 in the ph space by the complete set |mi〉. It
is seen that the total sum rule is exhausted by the collective state. This means that
in the degenerate case there is no transition probability from the ground state to any
non-collective state. On the other hand, the transition probability to the collective state
is drastically enhanced. We thus have a qualitative explanation for the strong 1− reso-
nance shown in 16O.

J. M. Yao SPA/SYSU Nuclear Theory 17 / 54



Introduction The Tamm-Dancoff approximation The particle-hole TDA The particle-particle TDA The Random-Phase-Approximation (RPA) The Linear Response Theory

The particle-particle TDA
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The pp-TDA

For the closed-shell plus two-nucleon systems: the wave function

|τ,A + 2〉 =
∑
m<n

Cτmna+
ma+

n |HF〉

The coefficients Cτmn are supposed to be antisymmetric, that is, Cτmn = −Cτnm. In
complete analogy to the ph-DA case, we obtain the pp-TDA secular equation:(

ETDA
τ − εm − εn

)
Cτmn =

∑
m′<n′

v̄mnm′nCτm′n′
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The pp-TDA

This is a linear Hermitian eigenvalue problem. The eigenvectors have to fulfill the nor m
and closure relations (n < m, n′ < m′)

∑
m<n Cτ

∗
mn Cτ

′
mn = δττ ′∑

τ CτmnCτ
∗

m′n′ = δmm′δnn′

As indicated, the sum in principle runs over all levels above Fermi energy and therefore
includes bound and continuum states. Since this generally gives rise to matrices too
big for present day computers, we usually work in a restricted subspace, taking into
account one or two major shells above the Fermi level. In order to account for the levels
not included, we must take a suitably "renormalized" interaction.
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The pp-TDA for pairing vibration

Two particles form such a stable entity that they can be multiplied, added to, or
removed from a nucleus (like, for example, 208Pb ).

The spectrum should therefore be approximately harmonic. This harmonic
spectrum is what has been termed the spectrum of "pairing vibrations."

Removing from 208Pb a 0+ pairing phonon leads us to 206Pb and adding a phonon
leading to the 210Pb.
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The Random-Phase-Approximation (RPA)
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The derivation of RPA equation

The TDA equation can be derived also by the equation-of-motion technique:

H|ν〉 = Eν |ν〉.

It is possible to define operators Qν+ and Qν in such a way that

|ν〉 = Qν+|0〉 and Qν |0〉 = 0

where the Q+
ν can be chosen as

Qν+ = |ν〉〈0|

From the Schrödinger equation we get the equation of motion[
H,Qν+

]
|0〉 = (Eν − E0) Qν+|0〉.
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The derivation of RPA equation

Multiplying from the left with an arbitrary state of the form 〈0|δQ we get〈
0
∣∣[δQ, [H,Q+

ν

]]∣∣ 0〉 = (Eν − E0)
〈
0
∣∣[δQ,Q+

ν

]∣∣ 0〉
We can use the commutator, because 〈0|Q+

ν = 〈0|HQ+
ν = 0. Until now we were exact

and, since the variation of δQ|0〉 exhausts the whole Hilbert space. First we re-derive
the TDA equation by approximating the exact ground state |0〉 by the HF state |HF〉 and
the operator Qν by the collective ph-operator

Qν+ =
∑
mi

Cνmi a
+
mai

By this approximation, we restrict ourselves to the space of 1p − 1h excitations, that is,
we set, δQ|0〉 =

∑
mi a+

mai |HF〉δCmi ,∑
nj

〈
HF
∣∣[a+

i am,
[
H, a+

n aj
]]∣∣HF

〉
Cνnj = ETDA

ν Cνmi

where ETDA
ν is the excitation energy in TDA approximation.
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The derivation of RPA equation

The RPA equation: a more general vibration creation operator

Q+
ν =

∑
mi

Xνmi a
+
mai −

∑
mi

Yνni a
+
i am

where the minus sign has been chosen for convenience. The RPA ground state
|RPA〉 is defined by analogy by

Qν |RPA〉 = 0

We will later on deduce from this condition an explicit expression for the ground
state. Instead of only one matrix Cνmi we now have two matrices Xνmi and Yνmi . We
also have two kinds of variations δQ|0〉, namely a+

mai |0〉 and a+
i am|0〉.〈

RPA
∣∣[a+

i am,
[
H,Q+

ν

]]∣∣RPA
〉

= ~Ων
〈
RPA

∣∣[a+
i am,Q+

ν

]∣∣RPA
〉〈

RPA
∣∣[a+

mai ,
[
H,Q+

ν

]]∣∣RPA
〉

= ~Ων
〈
RPA

∣∣[a+
mai ,Q+

ν

]∣∣RPA
〉

where ~Ων is the excitation energy of the state |ν〉. These equations contain only
expectation values of four Fermion operators, which are still very complicated to
calculate, because we do not as yet know the ground state |RPA〉.
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The derivation of RPA equation

The quasi-boson approximation: If we assume that the correlated ground state
does not differ very much from the HF ground state, we can calculate all
expectation values in the HF approximation,

〈
RPA

∣∣[a+
i am, a+

n aj
]∣∣RPA

〉
=δijδmn − δmn

〈
RPA

∣∣aj a+
i

∣∣RPA
〉

− δij
〈
RPA

∣∣a+
n am

∣∣RPA
〉

'
〈
HF
∣∣[a+

i am, a+
n aj
]∣∣HF

〉
= δijδmn (6)

The name "quasi-boson" approximation comes from the fact that the equation
would be an exact relation if the ph creation and annihilation operators obeyed the
commutation relations for boson field operators. The above equation however,
violates the Pauli principle because we have neglected terms coming from the
commutator.
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The derivation of RPA equation

Within the quasi-boson approximation, the amplitudes Xνmi and Yνmi have a very direct
meaning: their absolute squares give the probability of finding the states a+

mai |Ψ0〉 and
a+

i am|Ψ0〉 in the excited state |ν〉,

ρ
(1)ν

mi =
〈
Ψ0
∣∣a+

i am
∣∣Ψν

〉
'
〈
HF
∣∣[a+

i am,Q+
ν

]∣∣HF
〉

= Xνmi

ρ
(1)ν

im =
〈
Ψ0
∣∣a+

mai
∣∣Ψν

〉
'
〈
HF
∣∣[a+

mai ,Q+
ν

]∣∣HF
〉

= Yνmi

(7)

In a compact from, one obtains the RPA equation

 A B

B∗ A∗

 Xν

Yν

 = ~Ων

 1 0

0 −1

 Xν

Yν

 (8)

with (Xν)mi = Xνmi and (Yν)mi = Yνmi .
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The derivation of RPA equation

The matrix elements

Aminj =
〈
HF
∣∣[a+

i am
[
H, a+

n aj
]]∣∣HF

〉
= (εm − εi ) δmnδij + v̄mjin

Bminj = −
〈
HF
∣∣∣[a+

i am

[
H, a+

j an

]]∣∣∣HF
〉

= v̄mnij
(9)

The matrix A is hermitian and B is symmetric. The RPA equation reduces to the TDA
equation by setting Yνmi = 0.
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The validity of RPA

The quasi-boson approximation is valid for very collective states with many Xνmi of
the same order of magnitude, in which case the violation of Pauli princinple can be
neglected.

The amplitude Yνmi should be small compared to Xνmi because it describes the
ground-state correlation. If it is large, then the replacement of |RPA〉 with |HF〉 is
not justified.
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The RPA for transition strengths

To calculate transition probabilities between the excited state |Ψν〉 and the ground
state |Ψ0〉 we only need matrix elements of the type 〈Ψ0|F |Ψν〉 for a Hermitian
one-body operator F . In the RPA approximation they are given by

〈Ψ0|F |Ψν〉 =
∑
kk′

Fkk′ρ
(1)′

k′k =
∑
mi

FimXνmi + Fmi Yνmi

In the following sections we will frequently use the notation

〈Ψ0|F |Ψν〉 = f +X ν

with the column vectors

f =

 Fmi

F∗mi

 and X ν =

 Xνmi

Yνmi

 (10)
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The normalization and closure relations

The normalization of the RPA excited state,

Ψν = Q+
ν |RPA〉, Q|RPA〉 = 0,

is given by

δvν′ =
〈
RPA

∣∣[Qν ,Q+
v′
]∣∣RPA

〉
'
〈
HF
∣∣[Qv ,Q+

ν′
]∣∣HF

〉
(11)

δvν′ =
∑
mi

(
X v∗

mi Xν
′

mi − Yν
∗

mi Yν
′

mi

)
(12)
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The quasiparticle RPA

In the case that atomic nucleus has pairing correlation, the H can be written as

H = H0 + H11 + H31 + H40 + H22

The Q operator becomes

Q+
ν =

1
2

∑
kk′

(
Xνkk′α

+
k α

+
k′ − Yνkk′αk′αk

)
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The quasiparticle RPA

The matrices A and B are now given by (k < k ′, l < l ′)∗

Akk′ ll′ =
〈
HFB

∣∣[αk′αk ,
[
H, α+

l α
+
l′
]]∣∣HFB

〉
= (Ek + Ek′ ) δklδk′ l′ + H22

kk′ ll′

Bkk′ ll′ = −〈HFB |[αk′αk , [H, αl , αl ]]|HFB〉 = 4! · H40
kk′ ll′
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Low-Energy Electric Dipole Response of 120Sn
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Low-Energy Electric Dipole Response of 120Sn
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Low-Energy Electric Dipole Response of 120Sn
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The Linear Response Theory
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Linear Response Theory
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Linear Response Theory
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Linear Response Theory: the external field

the influence of an external time-dependent field

F (t) = Fe−iωt + F +eiωt

Assuming that F is a one-body operator,

F (t) =
∑

kl

fkl (t)a+
k al ,

and that the field is weak, that is, it introduces only small changes of the nuclear
density, which we can treat in linear order.
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Linear Response Theory: density matrix

The wave function |Φ(t)〉 of a nuclear system in an external F (r) field is no longer
stationary. The corresponding one-body density

ρkl (t) =
〈
Φ(t)

∣∣al
+ak

∣∣Φ(t)
〉

is now time dependent.

1. Assume that at any time ρ(t) corresponds to a Slater determinant (i.e., ρ2 = ρ).
Then ρ obeys the following equation of motion.

i~ρ̇ =

[
h[ρ] + f (t), ρ

]
.

This is the time-dependent Hartree-Fock (TDHF) equation.
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Linear Response Theory: density matrix

2. Assume that the external field f (t) is weak, that is, it introduces only oscillations
with small amplitudes around the stationary density ρ(0), which is itself a solution
of the stationary Hartree-Fock equation,

[
h
[
ρ(0)
]
, ρ(0)

]
= 0. Therefore, the

density has the form
ρ(t) = ρ(0) + δρ(t)

where
δρ = ρ(1)e−iωt + ρ(1)+

eiωt

is linear in the field f .
In the basis in which ρ(0) and h

[
ρ(0)
]

are diagonal, that is, in the HF-basis:

ρ
(0)
kl = δkl · ρ

(0)
k =

 0 for particles,

1 for holes,

and
(h0)kl =

(
h
[
ρ(0)
])

kl
= δkl · εk .
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Linear Response Theory: linear response equation

3. The condition ρ2 = ρ implies that the only non-vanishing matrix elements of ρ(1)

are ph and hp matrix elements ρ(1)
mi and ρ(1)

im . They are determined by the solution
of the TDHF equation.
Expand up to linear order in the external field f ,

i~δρ̇ = [h0, δρ] +

[
δh
δρ
· δρ, ρ(0)

]
+
[
f , ρ(0)

]
where δh/δρ · δρ is a shorthand notation for∑

im

(
∂h
∂ρmi

∣∣∣∣
ρ=ρ(0)

· δρmi +
∂h
∂ρim

∣∣∣∣
ρ=ρ(0)

· δρim

)
.

Using the rules for the calculation with HF densities, one finds that the pp and the
hh matrix elements vanish identically. For the ph and hp elements the linear
response equation

 A B

B∗ A∗

− ~ω

 1 0

0 −1


 ρ(1)ph

ρ(1)hp

 = −

 f ph

f hp


with

Aminj = (εm − εi ) δmnδij +
∂hmi

∂ρnj
; Bminj =

∂hmi

∂ρjn
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Linear Response Theory: interaction

These matrices correspond exactly to the matrices A and B of the RPA method, if we
use as a residual interaction

ṽpsqr =
∂hpq

∂ρrs
=

∂2E
∂ρqp∂ρrs

.

In the case of HF theory without density dependent forces, we can use the expression
for the energy and thus we get back the RPA matrices. However, the above derivation
is more general. It can also be applied to theories with density dependent forces. In
this case, for the calculation of excited states we have to use the force as the second
derivative of the ground state energy with respect to the density. In particular, this force
is no longer necessarily antisymmetric in the indices q and r .
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Linear Response Theory: response function

The linear response equation can be solved by inverting the matrix on the
left-hand side. We then find a linear connection between the external field f and
the change in the nuclear density (i.e., the response of the system):

ρ
(1)
kl =

∑
pq

Rklpq(ω)fpq .

The function Rklpq(ω) is called the response function.
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Linear Response Theory

The response function R depends on the frequency of the external field. It has poles at
the eigenfrequencies of the system, where already an infinitesimal field f is sufficient to
excite the corresponding eigenmode. To find these resonances (ω = Ων), we have to
look for the solutions of the homogeneous equation with vanishing external field.

(M− ~ΩνN ) ρ(1)ν = 0.

where

M =

 A B

B∗ A∗

 , N =

 1 0

0 −1


This is exactly the RPA equation. Its solution gives the transition densities

ρ
(1)
pq (Ων) =

〈
0
∣∣a+

q ap
∣∣ ν〉

The average nuclear potential oscillates around its stationary value, which corresponds
to a minimum in the energy surface of all possible product wave functions. In the limit
of small amplitudes we thus get a linear eigenvalue problem for the determination of the
normal modes of the system. The RPA approximation is therefore nothing but the small
amplitude limit of the time-dependent mean field approach.
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Linear Response Theory

Knowing the eigenmodes of the system, that is, the frequencies Ων and the RPA ampli-
tudes X and Y , makes it possible to solve the linear response equation

M− ~ωN = ~NX (ω − Ω)NX f

which can easily be inverted:

ρ(1) =
1
~
X (ω − Ω)−1NX+N

We have now an explicit expression for the response function, namely its spectral rep-
resentation:

Rpqp′q′ (ω) =
1
~

∑
ν>0

〈0 ∣∣a+
q ap

∣∣ ν〉 〈ν ∣∣∣a+
p′aq′

∣∣∣ 0〉
ω − Ων + iη

−

〈
0
∣∣∣a+

p′aq′
∣∣∣ ν〉 〈ν ∣∣a+

q ap
∣∣ 0〉

ω + Ων + iη

 .

Again, the index pairs pq and p′q′ run only over ph and hp pairs. All other matrix ele-
ments of R vanish in RPA order. The form is more general. If we use exact eigenfunc-
tions |ν〉 and exact energies ~Ων of the system, Rpqp′q′ (ω) is just the exact response
function.
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Linear Response Theory

If we introduce the response function R0 of the free system (without residual interaction
ṽ ),

R0
pqp′q′ (ω) =

ρ
(0)
q − ρ

(0)
p

~ω − εp + εq + iη
δpp′δqq′ ,

we can finally, in RPA approximation, derive another equation for R(ω), the so-called
linearized Bethe-Salpeter equation

Rpqp′q′ = R0
pqp′q′ +

∑
p1q1
p2q2

R0
pqp1q1

ṽp1q2q1p2 Rp2q2p′q′ .

The correctness of this equation can be verified simply by multiplying by (~ω − εp + εq)
and using the definition of R0, the spectral representation for R and the RPA equation.
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Linear Response Theory

Another useful property of the linear response function lies in the fact that its imaginary
part is related to the total transition probability. We define

RF (ω) := Tr
(

f +ρ(1)(ω)
)

=
∑

pqp′q′
f∗pqR(ω)

pqp′q′ fp′q′

and use the relation 1/(ω + iη) = P(1/ω)− iπδ(ω) to obtain

Im RF (ω) = −π
∑
ν>0

|〈ν|F |0〉|2δ (~ω − ~Ων) , ω > 0.

We get the energy-weighted sum rule by integrating this function,

S1 =
∑
ν

~Ων |〈ν|F |0〉|2 = −
~2

π

∫ ∞
0

ωImR(ω)dω

and the transition matrix element |〈ν|F |0〉|2 as the residue of RF (ω) at the pole ω = Ωv .
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Linear Response Theory: a simple example

A separable ansatz for the ground state correlation matrix element

ṽmjin = λDmi D∗nj , ṽmnij = λDmi Dnj

where D is identical with the external field operator F . From the Bethe-Salpeter equa-
tion, we get

RD(ω) = R0
D(ω) [1 + λRD(ω)]

with

R0
D(ω) =

∑
pqp′q′

D∗pqR0
pqp′q′Dp′q′ =

∑
mi

|Dmi |2
(

1
~ω − εm + εi + iη

−
1

~ω + εm − εi + iη

)

Solving for RD(ω) yields

RD(ω) =
R0

D

1− λR0
D

The poles of RD(ω) give the excitation energies Ων and thus in the schematic model
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Linear Response Theory: a simple example

We have the following dispersion relation.

1
λ

= R0
D (Ων) =

∑
mi

|Dmi |2
2εmi

~2Ω2
p − ε2mi

; εmi = εm − εi

We can drop the infinitessimal η because we are only interested in bound states for
which Ων 6= εmi .)
Compared to the TDA, two qualitative differences which are due to the RPA ground state
correlations:

In the case where the residual interaction becomes stronger than the critical value
(i.e., λ < λcrit ) the energy of the low-lying collective state becomes imaginary.

The (T = 0)-RPA state is shifted further down than its corresponding TDA state
for a comparable interaction strength λ.
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Linear Response Theory: a simple example

We can study this more closely in the degenerate case. If we put all εmi equal to ε we
have

E2
coll = ε2 + 2ελ

∑
mi

|Dmi |2

In the degenerate case, therefore, we have for λcrit

λcrit = −
ε

2
∑

mi |Dmi |2

This is the point where the chosen HF-basis no longer gives the minimum for the ground
state energy. The true minimum now occurs in a different HF-solution, which turns out
to be deformed. We therefore of call λcrit the point at which a phase transition from
spherical state into a deformed shape of the nucleus occurs.
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Linear Response Theory: a simple example

We now want to turn to the calculation of transition matrix elements. We have to cal-
culate the residue of RD(ω) at the pole ω = Ων . In the vicinity of Ων ,RD(ω) has the
form:

RD(ω) =
R0

D (Ων)

− λ
(
dR0/dω

)∣∣
ω=Ω2 · (ω − Ων)

We therefore get

|〈ν|D|0〉|2 = −
~
λ2

(
dR0

dω

)−1

Ωr

=

(
λ2
∑
mi

|Dmi |2
4εmi~Ων(

~2Ω2
ν − ε2mi

)2

)−1

In the degenerate case this yields

|〈ν|D|0〉|2 =
ε

Ecoll

∑
mi

|Dmi |2

We see that for the low-lying states the transition probability is enhanced as compared
to the TDA value by a factor ε/Ecoll. . For the collective octupole and quadrupole states
this factor can be as large as two. Similar but less pronounced results are found in
realistic calculations.
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