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Introduction

Ab initio Many-Body Methods in Nuclear Physics
(personal statement)

@ describe the atomic nucleus from the bottom up with (systematically
improvable) bare nuclear forces compatible with the symmetries of
QCD

@ solve the quantum mechanical many-body problem for all
constituent nucleons either exactly for very light nuclei or by
employing certain well-controlled approximations for heavier nuclei.
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Introduction
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Nuclear forces
@ Short-range repulsion (hard core)

@ Strong coupling of high- and low-momenta states
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Figure: Several phenomenological NN potentials in the 'Sy channel and
momentum space matrix elements of the Argonne v18 (AV18).

S.K. Bogner et al. Prog. Part. Nucl. Phys. 65 (2010) 94.
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Figure: H. Hergert, Front. Phys. (2020)
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The Brueckner-Hartree-Fock (BHF) theory

The G matrix is given by:

(ab| G(W)|cd) = <ab\V\cd>+Z<ab|vmm%mnm(waﬁ

mn

R R

@ W is the starting energy (parameter). In many cases, one chooses
W =¢e,+¢p.

@ €, ¢, are the HF single-particle energies.

@ Q is the Pauli operator which forbids the states being scattered
below Fermi surface.

K. Brueckner, C. Levinson, H. Mahmoud, Phys. Rev. 95, 217 (1954)
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The Brueckner-Hartree-Fock (BHF) theory

@ The HF equation is given by:
> (T + V), Djs = £.Ds,
J
where the one-body mean-field potential is

A

Uy =) {iclG(W)ljc).

c=1

Rel. BHF: sh. shen et al., Prog. Part. Nucl. Phys. 109, 103713 (2019).
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The Brueckner-Hartree-Fock (BHF) theory

Procedure of the (R)BHF calculation

1.

Initial single-particle basis  {|i)} trial for RBHF final solution {la)}

. b dQ c,d)
Bethe-Goldstone equation ~ Gabarr (W) = Vaparyy + 5 Z ”; - - Geawy (W),
Solving with matrix inversion method
M. Haftel and F. Tabakin, NPA 158, 1 (1970)

A

Single-particle potential Uy = Z {ac|G(W)|be).
c=1
RHF iteration (T} + Uyy) Dy = €D,

j

Ifconverged {|#)} = {l©)} = {la)} , RBHF iteration finishes.

Basis transformation Vi, = Z DD D,
Go back to step 2. klmn

Stolen from J. Meng's talk.
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The Full Configuration Interaction (FCI) Method

@ All A nucleons are considered active.

@ The nuclear wave function in the FCl is expanded in a set of Slater
determinant basis functions,

|W(FCI)> — Z Cre|®s)
k

where the many-body basis |®y) consists of all Slater determinants
constructed from the single-particle basis set

{100 = A(6n 00}

@ The expansion coefficients are obtained from a large-scale
Hamiltonian matrix diagonalization.

Z HuC = ECx,  Hi = (®k|H|®))
]
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The Full Configuration Interaction (FCI) Method

@ Starting from a reference state

Do) = A(¢s, ... b1,)

which is a single Slater determinant build from the set of
single-particle orbitals that minimize the energy functional
Eret[di,, - - - @iy], such as a HF state.

@ The FCl wave function can be parametrized by the linear ansatz

>

|\U(FCI)> _ (1 n C(FCI)) |®o), cFen _ Z ¢

where the np — nh excitation operator generating all possible
np — nh excitations reads
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The Full Configuration Interaction (FCI) Method

The orbitals occupied by the reference state (referred to as hole states)
and the unoccupied (particle) states

hole states ciyjok, .. € occupied in |®
J
article states :a,b,c,... € unoccupied in |$
p b b b p
any state Top,q,r,...
2 .
i L particle states :a,b,c,...
1f5/2 ) ) )
2Pg
any state = Fore —
p,q,r,... 1d3/2—.m— )
25| —g—o—
1d5/2 000000 o
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P g o
10y, ~O L@
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The Full Configuration Interaction (FCI) Method

Dimension of model space

@ N neutrons distributed among n single-particle states

(%)=

As an example, for a model space which comprises the first 4 major
harmonic oscillator shells only (0s,0p, 1s,0d and 1p, 0f shells), we have
40 single particle states for neutrons and protons. For 1°0,

40 40! ,
= — ~ ]_
( 8 ) @28~ 810

possible Slater determinants. Multiplying this with the number of proton
Slater determinants gives d ~ 10 possible Slater determinants and a
Hamiltonian matrix of dimension 10'% x 10%5.
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The Truncated Configuration Interaction

In practical calculation, the wave function is truncated up to the
Mp — Mh and the FCl in this case is called CIM

M

CFCn o Z >~(CIM)
n

and

M M

n=1 n=1
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The Truncated Configuration Interaction

A set of coupled equations are obtained for the energy E(¢™) and the
amplitudes cal"'ak by left-projecting the CIM Schrédinger equation onto

the reference |<1>> and excited determinants |<D 2,

M

<¢f; <1+ZC(C‘M)> ¢o> = BN i

M
<¢?11'.A,'.iaMM <1 + CIM)> ¢0> _ E(CIM)CZIA::};M Yay, ..., iu
n=1

g

Jiangming Yao 14 / 59



The Truncated Configuration Interaction

where np — nh excitation |¢;-’11'_'_‘_‘,?n"> of the reference determinant is defined

as the Slater determinant in which, relative to the reference state |®), n
hole states have been replaced by n particle states, i.e.,

o77) = (8l4)
at .3
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The Truncated Configuration Interaction (2p-2h)

The eigenvalue equation reads,

Z (Hkl - E5k/> G=0

i

If the configurations are truncated up to 2p-2h, one has

e k=0: <¢k| = <¢0|,

<¢o|f4 - E\%>+Z <¢0|H - E\q>,.a> G+y <q>0|ﬁ/ - E|¢Z."> 2P =0

ai abij

or

E — Erei = AE = > (0ol 07) C7 4+ 3 (@0l 03 €,

ai abij

where the energy Eges is the reference energy and AE defines the
so-called correlation energy.
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The Truncated Configuration Interaction (2p-2h)

For the HF reference state we have already computed the matrix
(Dol ) and (o |03,

(@olfio7) =0
and we are left with a correlation energy given by

E — Ener = AE"F =3 (0ol |03 ) 3
abij

Inserting the various matrix elements we can rewrite the previous
equation as

AE = (ilfla) G + > (ijlv]ab) 3"

ai abij
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The Truncated Configuration Interaction (2p-2h)

o k=1 (& = (¥3],

(®F|H — E|®o) + > (0F|H — E|®7) Cf
bj
+ ) (PFH - EJ0) G+ Y (7| — E|of) G =

bejk bedjkl

Substituting the expression of H in normal-ordering form

H = <¢0|H|¢0>+Zf;{agaq}+%vaq{af alaa} (2
Pq pqrs

one finds an expression for the coefficients C7 through

7+ (OFII07) G — ECP 4 (911AI9}) ¢
bj£ai
+D_(O7IHIOR) G + Y (@TIAIOST) Gt =0 (3)

bejk bedjkl
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The Truncated Configuration Interaction (2p-2h)

The above equations are normally solved iteratively, that is we start with
a guess for the coefficients C7 . A common choice is to use perturbation
theory as a starting point for the unknown coefficients. Replacing

<¢,""|I:I|d>f’> with E + €, — €;, and setting the right three terms to be

zero, one finds the 1p-1h coefficient

Similarly, one obtains an equation for Cj’,’f,

o—<¢ab|H E\cbo> Z<¢ab|H E|<D°>Ck
ke

+ > (03l - Elog) i + S (@3PIf — Elogl) Cie

cdkl cdeklm
ab cdef cdef
+ E : <¢ |H E|¢k/mn> Cklmn'
cdefklmn
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The Truncated Configuration Interaction (2p-2h)

One can isolate the coefficients C,f,d in a similar way as we did for the
coefficients C?. A standard choice for the first iteration is to use again
perturbation theory to first order in the interaction and set

C_a_rb _ <U|\7|ab> (5)

1
N T )
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The No-core shell model (NCSM) method

NCSM: truncation not at excitation rank but rather on excitation energy
of a Slater determinant relative to the unperturbed reference state is
defined by

n
&= (e —6),
k=1

then the NCSM again uses a linear parametrization of the wave function
similar to the FCl parametrization,

‘\U(NCSM)> _ (1 n XA: &-I(INCSM)> |®),
n=1

with excitation operators

/

PN 1
NCSM ar...anat At 3. 3.
(r(1 ) W E G j'dy ...dy dj ...dj
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The No-core shell model (NCSM) method

where the summations

are constrained to maximum excitation energies, generated by the
operator string 3 ...3a] 3 ...3; acting on the reference state, according
to

€l < Nimax.
This Npax truncation is of particular significance in NCSM calculations
using a harmonic-oscillator basis, since despite of the use of
single-particle coordinates this truncation allows for any choice of Ny ax
an exact factorization of the NCSM wavefunction into a center-of-mass
and a relative part,

‘W(NCSM)> = Vi) ® [Wen)
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The coupled-cluster theory

The Exponential Ansatz

@ The wave function is constructed as

wy=eTlo), T=S"1,

n=1

where the cluster operator T is defined in close analogy to the Cl
case.

- 1 .
L = v = WZ tf {alai
ai
R 1 b At A
T - \/ \/ = WZ el falaja;a

abij

. 1 .
T, \Zvy = GF Z gtotial oa a oAb

aj..an
i1.in
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The coupled-cluster theory

By definition, the expectation values of normal-ordered operator products
in the reference state, which serves as new vacuum, vanish

(o|{aiafaa}|e) = (o] o) =o0.
The Hamiltonian operator can be rewritten in normal-ordering form
N . 1 N
ho +Z<P‘hl‘ q> 313, + Zz<pq‘hz
Pq pars
A i 1 i ata A
= (®|H|®) + Z fy {a;gaq} + 7 Z vha {a;aj,asa,}

pq paqrs

(®|H[®) + Fy + Vi (6)

A

>

r

A"' /\T A
rs> a,a,3s
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The coupled-cluster theory

The matrix elements are given by

<¢|H|<b>:ho+z<f\ﬁl\f>+%z<y]z2],-j> )
(p|flq) = <p‘h1’q>+z<pl‘hz‘q/> (8)

Vi = (pq|V|rs) = <pq ‘hz‘ rs> (9)
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The coupled-cluster theory

Using the normal-ordered Hamiltonian,
Ay = A — (o|H|®),

and after subtracting the zero-body contribution, the Schrédinger
equation can be written in the form

el |o) = AEeT|®),

in which the quantity .
AE = E — (®|H|P)

is called the correlation energy. Since (®|H|®) is the expectation value of
the Hamiltonian in the reference state, it is also referred to as reference
energy Eref , .

Eef = (®|H|P).
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The coupled-cluster theory

The total energy is a sum of reference and correlation energy. By
left-multiplication with e=7 | arriving at

o) = AE|®),

where the (normal-ordered) Coupled-Cluster effective Hamiltonian His
defined as X A

?—A[ = e_Tl:INeT.
The above form of the Schrédinger equation is of particular importance
and will be the starting point for the derivation of the Coupled-Cluster
equations. )
Since TT =+ —7A', the transformation e’ is not unitary, and thus # is not
Hermitian. The transformation is, however, a similarity transformation
(also referred to as similarity transformed Schrédinger equation) and,
therefore, the spectrum of the original Hamiltonian is not altered.
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The coupled-cluster theory

Coupled-Cluster method (CCM)

In this method, the cluster operator is truncated to some excitation rank
M

i

For M = 2, it is called CCSD, and so on. Due to its nonlinear nature, the
Coupled-Cluster Ansatz allows to generate higher-order excitations from
products of lower-order excitation operators.

|®) 1, |®) )
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The coupled-cluster theory

For a truncated CCM with the cluster operator
T TM = ?—1+7A-2+...+7A—M

the expression for the correlation energy AEM) = AE (t(M)) as function
of the cluster amplitudes

W=y gt

can be derived by left-projecting the similarity-transformed Schrédinger

equation )
HM b)) = AEM|0)
with . .
7-Al(M) =e Ten I:INeT(M)

onto the reference state.

Jiangming Yao 29 / 59



The coupled-cluster theory

A coupled set of algebraic equations for the determination of the
amplitudes t™) is obtained by left-projecting the similarity-transformed

Schrédinger equation onto the excited determinants ‘¢‘Z{:ﬁ:> with

n<M,ie.,
<<D OO <|>> = AEM) (10)
<¢;?” HOD 4>> = 0, Va,i (11)
(oA @) = 0, Vab,i, (12)
: (13)
<¢?11,’.'.1'A3” HOD ¢> = 0, Va,...,am,h,...,im- (14)

In the case of CCSD, for example, the 7A'1 and 7A'2 amplitudes can be
determined by solving the system of the first three equations.

Jiangming Yao 30 / 59



The coupled-cluster theory

The effective Hamiltonian ™) in case of two-body Hamiltonians
actually terminates at finite expansion order due to T being an
excitation operator

A = Fiy 43 [, T00]
[ 7] 7
g [[[Fme 700 709] 700]
+% H[ fin, ?—(M)] %(M)] 7 T(M)} i—(M)} (15)
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A simple case: CCD

Let's approximate the cluster operator T by including only 2p — 2h
correlations. This leads to the so-called CCD approximation, that is

TrT,= Zt {a;fa};aja;},

abu

meaning that we have
|W0> ~ |\UCCD> — exp (?—2) |¢0> .

Inserting these equations in the expression for the computation of the
energy we have, with a Hamiltonian defined with respect to a general

reference vacuum
H= HN + Eref7

with

v = S (plFlaabag) + 7 3 (palilrs){ahalasar).

pq pars
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A simple case: CCD

Considering the fact that
<¢0 ‘7\—2’:IN‘ q>0> =0,

and the Ay is truncated up to normal-ordered two-body term, so that

8

the energy in the CCD can be written as

HN(?2)2’ ¢0> —0,

<CD0 ‘exp (f 7A'2) I:IN exp ('7'2) ‘ <I>o> = <¢0 ‘I:IN (1 + 7A'2) ‘ <D0> = Eccp.
This quantity becomes

1 N
ECCD — Eref + Z Z<U|V|ab>t5ba
abij
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A simple case: CCD

The unknown amplitudes t7” is determined by
<<D,§-b ‘exp (—?’2) Fy exp (?’2)‘ <D0> =0.

These equations can be reduced to (after several applications of Wick's
theorem), for all i > j and all a > b,

1
0 =(ab|v]ij) + (f; tep—ej—e) e s E (ablofedyed + = E (ko] e
2
kil
P(ij | ab) E (kb|o \q)t“+f E (K)o \cd)t,jdt,'j,"+P(u) E (KI|o \cd)tactbd

klcd kled

1
- —P 0) E (K)o \cd):dkcr;jb P(ab) E (19| cd) e e db

klcd klcd

where we have defined IAD(ab) =1- Isab, and IADQb interchanges two
particles occupying the quantum numbers a and b. The operator
P(ij | ab) is defined as

P(ij | ab) = (1 _ /“D,j) (1 - /53,,) .
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A simple case: CCD b X %

YAT-SEN UNIVERSITY

The single-particle energies €, are normally taken to be Hartree-Fock single-particle
energies. Recall also that the unknown amplitudes l?jb represent anti-symmetrized
matrix elements, meaning that they obey the same symmetry relations as the two-
body interaction, that is|

ab 1b a a
e
The two-body matrix elements are also anti-symmetrized, meaning that

(ab[v|ij) = —(abl0]ji) = —(ba0]ij) = (ba|vlji).

The non-linear equations for the unknown amplitudes tZ-b are solved iteratively. We
discuss the implementation of these equations below.

M. Hjorth-Jensen et al., An advanced course in computational nuclear physics, Lecture notes in Physics, 2017
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A simple case: CCD L1 S

Iterative solvers need a guess for the amplitudes. A good starting point is to use
the correlated wave operator from perturbation theory to first order in the interaction.
This means that we define the zeroth approximation to the amplitudes as

(abl0])

@ -
G (i +€—€a—ep)

leading to our first approximation for the correlation energy at the CCD level to be
equal to second-order perturbation theory without 1p — 14 excitations, namely

(ij|d]ab){ab||ij)
(€i+ ¢ —€a—eb)

1 P 1
AEEZOC)D — ZZ(mv'ab)(t;}h)(O) = Z Z .

abij abij

M. Hjorth-Jensen et al., An advanced course in computational nuclear physics, Lecture notes in Physics, 2017
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A simple case: CCD

Before we attack the full equations, it is however instructive to study a
truncated version of the equations.

We will first study the following approximation where we take away all
terms except the linear terms that involve the single-particle energies and
the two-particle intermediate excitations, that is

1
0 = (ab|Vij) + (€2 + b — € — &) t7° + 5 > (ab|¥|cd)ts? (16)
cd

Setting the single-particle energies for the hole states equal to an energy
variable w = €; + ¢;, the above equation reduces to the equations for the
so-called G-matrix.
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A simple case: CCD

Defining an energy-dependent quantity

T,-jb(w) =(w—€,— eb)t;j-b

and inserting the identity

W — €c — €4
1=
W — €. — €4

the previous equation (16) becomes

1 . 1
25(w) = (ab|0|ij) + > > (ab|¥|cd) ————75%(w)

— W — €c
This equation, transforming a two-particle configuration into a single
index, can be rewritten as a matrix inversion problem. It can be solved by
iteration. Solving the equations for a fixed energy w allows us to compare
directly with results from Green's function theory when only two-particle
intermediate states are included.
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A simple case: CCD

The next approximation is to include the two-hole term, a term which
allows us to make a link with Green's function theory with two-particle
and two-hole correlations

0 = <ab|\7|ij> (ea+€p—€i —¢j) t-‘?b

+= Z ab|Vcd)ts? + = Z KIO|ij)tgp. (17)

This equation can be solved in the same way.
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The many-body perturbation theory (MBPT)

@ The exact wave function of non-degenerate ground state of a given
system is expanded in terms of a series of Slater determinants

Wo) = [®0) + > Cm [Pm) (18)

m=1
where we have assumed that the true ground state is dominated by

the solution of the unperturbed problem, that is

Fo |do) = Wo [®o) (19)

The state |Wg) is normalized as (®q | Wo) = 1.
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The many-body perturbation theory (MBPT)

The Schrodinger equation is given by

H [Wo) = E [Wo) (20)

Multiplying from the left with ($®¢| gives
<¢O|F/\\uo> = E(®g | Vo) = E.

SubsEituting A = Fy+ H and consdering the fact that the operators A
and Hp are hermitian

<¢o|f:/0 + /://|‘|’o> =Wy + <¢o\f://|‘|’o> ;

and thus
AE:E7W0:<<DO)I:I,’\U0>. (21)

The AE is just the correlation energy except that the reference energy
Eret = (Po|H|®Po) is replaced by the unperturbed energy Wj.
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The many-body perturbation theory (MBPT)

Model space

Let’s assume our model space is defined by the operator P

P = |g) (0], (22)

and the excluded model space @

m=1

Jiangming Yao 42 / 59



The many-body perturbation theory (MBPT)

We can thus rewrite the exact wave function as

[Wo) = (P + Q)[Wo) = o) + Q| Wo) (24)
Going back to the Schrédinger equation, we can rewrite it as, adding and
a subtracting a term w |Vy) as

(w - F/O) W) = (w —E+ H,) W) (25)
where w is an energy variable to be specified later. We assume also that

the resolvent of (w — I:Io exits, that is it has an inverse which defines
the unperturbed Green'’s function as

R (26)

=y
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The many-body perturbation theory (MBPT)

We can rewrite Schrodinger's equation as

1 .
Vo) = — (w=E+ ) vo), (27)

and multiplying from the left with Q results in

QW) = » Ql:IO (w —E+ H/) Vo), (28)

which is possible since we have defined the operator Q in terms of the

eigenfunctions of Hp . Since these operators commute we have

~

1 1 Q

Q——~Q=0—~= —. (29)
(w — Ho) (w — Ho) (w — Ho)
With these definitions we can in turn define the wave function as
|\U0> = “Do) + QA (OJ — E + I‘:I[) |\|J0> . (30)
H

w — Fo
Jiangming Yao 44 / 59



The many-body perturbation theory (MBPT)

SUN YAT-SEN UNIVERSITY

This equation is again nothing but a formal rewrite of Schrodinger’s equation and
does not represent a practical calculational scheme. It is a non-linear equation in
two unknown quantities, the energy E and the exact wave function |¥). We can
however start with a guess for [¥) on the right hand side of the last equation.

The most common choice is to start with the function which is expected to exhibit
the largest overlap with the wave function we are searching after, namely |®).
This can again be inserted in the solution for |¥) in an iterative fashion and if
we continue along these lines we end up with

0 Q i
o) = ; { - (a)—E—l—H,) |®y).
for the wave function and
AE = i(d’olﬁz QAA (a)—E—l—ﬁI) i|q>0),
i=0 @ —Ho

which is now a perturbative expansion of the exact energy in terms of the interaction
H; and the unperturbed wave function |¥).
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The many-body perturbation theory (MBPT)

@ In Brilluoin-Wigner perturbation theory: it is customary to set
w = E. This results in the following perturbative expansion for the

energy AE
AE:i o | QA (w—E—H:I,) ®,
i=0 UJ—HO
= (|| A+ H QA Hy + A, QA H, QA Hi+... )| o
E — Hy E—Hy E-H

This expression depends however on the exact energy E and is again not
very convenient from a practical point of view. It can obviously be solved
iteratively, by starting with a guess for E and then solve till some kind of

self-consistency criterion has been reached.
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The many-body perturbation theory (MBPT)

Defining e = E — Ho and recalling that Ho commutes with @ by
construction and that Q is an idempotent operator Q2 Q we can
rewrite the denominator in the above expansion for AE as

2 1 A1 1 aa 4
Qﬁ = Q |:,\ + TQHIQ
é— QHQ e ¢
Inserted in the expression for AE we obtain

1

H[+H[Qﬁ
E—Ho— QH,Q

AE = <¢0
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The many-body perturbation theory (MBPT)

@ In Rayleigh-Schrédinger (RS) perturbation theory: we set w = W
and obtain the following expression for the energy difference

{ — (FI,—AE)}" o0>

. . Q . Q .
iy + Hy ~ (H, - AE) + Ay ~ (H, - AE) ~ (H, - AE) R
Wy — Ho Wo — Ho Wy — Ho

S

i=0

<“’o g (>1)

The operator @ commutes with I:Io and since AE is a constant we obtain
that

QAE [&g) = QAE ‘O¢o> =0

Inserting this result in the expression for the energy gives us

AE = <®0

P Q. Q . Q.
Ay + A — fy + Hy _ (H,—AE) — A+ ...
Wo — Ho Wo — Ho Wo — Ho

Jiangming Yao 48 / 59



The many-body perturbation theory (MBPT)

@ The first correction:

AE® = (o ]p/,] @), (33)

)

(ab|0if
— ,Z ij|0|ab) w (34)

€it+e—€—¢€p

@ The second correction:

AE®?) = <¢0

— g,
Wo — Ho

abij

The second equivalence is based on the assumption that |®g) is a
HF state, in which case one also has AE(M) = 0.
¢0> . (35)

@ The third correction:

~ ~

i (P 0)

AE®) = <q>0




The in-medium similarity renormalization group

H(s) = U(s)H0)U' (s)




The (IM)-SRG

[®) |@f) |of) |Bph) @) |19 |opp) |eph)
B E
S 3
- s—ro0 -
= 2
) =
o %
"%E iE;
({7(0)1)) (il71(=) 1)

Taking the derivative H(s) with respect to the flow parameter s,

dl;lis) B dl;lis) £(0) U (s) + 0(5)15/(0)61[‘55(5)
N S) . R N A~ Ut S
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The (IM)-SRG

Since U(s) is unitary, we also have

L{o@ve)=2h=0 =

Defining the anti-Hermitian operator

is) = L () = i (s)

we can write the differential equation for the s-dependent Hamiltonian as

d -~

2 Hs) =[i(s). H(s)]

This is the SISG flow equation for the Hamiltonian, which describes the
evolution of H(s) under the action of a dynamical generator 7(s).
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The (IM)-SRG

The H(s) can be obtained by integrating the flow equation numerically,
without explicitly constructing the unitary transformation itself. Formally,
we can also obtain U(s) by

9 1) = ()0

The solution to this differential equation is given by the S-ordered
exponential

U(s) = Sexp/ ds'n(s'),
0

because the generator changes dynamically during the flow. This
expression is defined equivalently either as a product of infinitesimal
unitary transformations,

N
U(s) = lim enedsi 5 =5+ ds;, 255,' =5
i

N—oo 4
i=0

or through a series expansion:

U(s):zn:j!/Osdsl/osds2.../Osdsnsm(sl)...n(sn)}.
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The (IM)-SRG

@ Wegner proposed the generator

0(s) = [Ma(s), Aoa(s)]

which will be able to drive the Hoq(s) — 0 as the flow parameter
S — OQ.
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Application of SRG to the pairing model

@ The pairing Hamiltonian:
“ 1
H = 5Z(P - 1)32;03;)0 - Egz a;+a;_aq_aq+,
po Pq

where § controls the spacing of single-particle levels that are indexed
by a principal quantum number p =1,...,4 and their spin
projection o, and g the strength of the pairing interaction.

4 state p 2s. £
0 1 1 0

3 — 1 1 -1 0
2 2 1 )

2 I 5 3 2 ~1 5
1 ‘ , 4 3 1 26
5 3 -1 26

_ _ 6 4 1 35
0=g=1 7 P Y Y
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Application of SRG to the pairing model

@ Let's only consider the S, = 0 sub block with two particle pairs. In
this block, the Hamiltonian is represented by the six-dimensional

matrix
20-g -g/2 -g/2 -g/2 -—g/2 0
-g/2 4-g -—g/2 -g/2 -0  —g/2
y_| —&/2 -g/2 66-g 0  —g/2 —g/2
-g/2 —g/2 0 6i—g —g/2 —g/2
—-g/2 0 -g/2 —g/2 8-g —g/2
0 -g/2 -g/2 —g/2 —g/2 106—g
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Application of SRG to the pairing model

We split the Hamiltonian matrix into diagonal and off-diagonal parts:
Hy(s) = diag (Eo(s), ..., Es(s)), Hod(s) = H(s) — Hu(s)
The flow equation in the configuration basis in which one has
Hyli) = E;|i), and
d .o A 2 a7 Al
S lAL) = D (ilAlk) (kALY = (1AL k) (kIAL)
K

=—(E—E) i)+ (<i|ﬁ|k> <k ’Hod
k

Y- (i

where <i ’I:L,d‘ i> = 0 and block indices as well as the s-dependence have

k) (Il )

been suppressed for brevity. The Wegner generator is given by

(il = (i [Fla, Floa] | 1) = (6 = £) (i |Floa| )
and inserting this into the flow equation, we obtain
d Ly L . D " .
SGlA) = — (B — £ (i |Foa] ) + ;(5 + 6 — 26 (i |Floa| ) (k| Floa| /) (36)
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Application of SRG to the pairing model

If Hl:Iod (so)H < 1 in some suitable norm, the second term in the flow

equation can be neglected compared to the first one. For the diagonal
and off-diagonal matrix elements, this implies
k) (K ‘Hod i) ~0

dE; d< >_2Z(E E) <i‘/3/od
I =~ — (B~ B)? (i | )

ds  ds
respectively. Thus, the diagonal matrix elements will be (approximately)
constant in the asymptotic region,

and

Ei(s) ~ Ei(s), s> s,

which in turn allows us to integrate the flow equation for the off-diagonal
matrix elements. We obtain

<i I:Iod(s)‘.j> ~ <i

i.e., the off-diagonal matrix elements are suppressed exponentially.

B (50)‘j> e (EEV(—=) g5 g



Application of SRG to

the pairing model

# Main program

# Hamiltonian for the pairing model
def Hamiltonian(delta,g):

def main():

9 1.
delta = 2.

Ho. Hamiltonian(delta, g)
dim = He.shape[0]

# calculate exact eigenvalues

eigenvalues = eigvalsh(Ho)

# turn initial Hamiltonian into a linear array
ye = reshape(Ho, -1)

# flow parameters for snapshot images
flowparams = array([6.,0.001,0.01,0.05,6.1, 1., 5

# integrate flow equations
# which are 1d arrays themselves

ys =

# reshape individual sol;

# matrices

Hs = reshape(ys, (-1, dim,dim))

data = [1

for h in Hs:
data.append(diag(h))

data = list(zip(xdata))

print(len(Hs))

plot_diagonals(data, eigenvalues, flowparams, delta, g)

plot_snapshots(Hs, flowparams, delta, g

return

odeint returns an array of solutions

on vectors into dim x dim Hamiltonian Hd

H = array(
[(2+delta~g,  -0.54g, -0.5%g
[ -0.54g, Lxdelta-g, -0.5%g,
[ -0.5%,  -0.5%g, 6xdelta-g,
[ -0.5%g,  -0.5%g, 0.,
[ -0.54g, o., -0.5%g,
r 6.,  -0.54g, -0.5%g,

)
return H

# commutator of matrices
def commutator(a,b)
return dot(a,b) - dot(b,a)

-0.5%g,  -0.5x, 0.1
-0.5%g, e, ~0.5%g 1
, -0.5xg, -0.5%g ]
Ixbkdelta-g, 0.5+, -0.54g 1
-0.5%g, Bdelta-g, -0.5%g 1

-0.5%g,  -0.54g, 1osdelta-g 1]

# derivative / right-hand side of the flow equation

10.
D def derivative(y, t, dim):

H = reshape(y, (dim, dim))

odeint (derivative, yo, flowparams, args=(dim,))

# extract diagonal Hamiltonian.

# reshape the solution vector into a dim x dim matrix

= diag(diag(H))
# ... and construct off-diagonal the Hamiltonian
Hod = H-Hd

# calculate the generator
eta = commutator(Hd, Hod)

# dH is the derivative in matrix form
dH = commutator(eta, H)

# convert dH into a linear array for
dy = reshape(dH, -1)

return dy

e ODE solver
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