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Introduction

Configuration: the distribution of Fermions in orbitals. For the case of A Fermions,

Φ (r1, r2, . . . , rA) =
1
√

A!

∑
π

(−1)π
A∏

k=1

ψk
(
rkπ
)

where π is a permutation of the indices i = 1, . . . ,A and (−1)π is its sign, +1 for
even and −1 for odd permutations. The permutation changes the index i into iπ .
Wave function of a many-body Fermionic system:

Ψ(r1, r2, . . . , rA) =
∑

i

ci Φi (r1, r2, . . . , rA) .
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Operators

The one-body operator F̂ :

F̂ ≡
A∑

k=1

f̂ (rk ) =
∑
αβ

fαβa†αaβ ≡
∑
αβ

fαβAαβ ,

where the matrix element fαβ is defined as

fαβ ≡ 〈α|F̂ |β〉 =

∫
d3rψ∗α(r)f̂ψβ(r).

The two-body operator V̂ ,

V̂ =
1
2

∑
k 6=k′

v̂(rk , rk′ ) =
1
2

∑
ijkl

vijkl a
†
i a†j al ak ≡

1
2

∑
ijkl

vijkl A
ij
kl =

1
4

∑
ijkl

v̄ijkl A
ij
kl ,

where the matrix element of vijkl is defined as

vijkl =

∫
d3r

∫
d3r ′ψ∗i (r)ψ∗j

(
r ′
)

v̂
(
r , r ′

)
ψk (r)ψl

(
r ′
)
,

Aij
kl = a†i a†j al ak .

and v̄ijkl is defined as
v̄ijkl ≡ vijkl − vijlk .
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Normal-ordered (正规乘积) operators

Anticommutation between Fermionic creation and annihilation operators:{
a†i , a

†
j

}
=
{

ai , aj
}

= 0,
{

a†i , aj

}
= δij

The indices are collective labels for the quantum numbers of single-particle states.
A complete basis for a many-body Hilbert space,

|Φ {i1 . . . iA}〉 =
A∏

k=1

a†ik |−〉

which is a Slater determinant. Here we choose |Φ〉 as the reference state with
respect to which the operators will be normal-ordered.
Define the normal-ordered operator

a†i aj ≡
{

a†i aj

}
+ a†i aj

where the brackets {. . .} indicate normal ordering, and the brace over a pair of
creation and annihilation operators means that they have been contracted,

a†i aj ≡ 〈Φ
∣∣∣a†i aj

∣∣∣Φ〉 ≡ ρji , 〈Φ|{· · · }|Φ〉 = 0.
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Normal-ordered (正规乘积) operators

Starting from the one-body case, we can define normal-ordered A-body operators recur-
sively by evaluating all contractions between creation and annihilation operators, e.g.,

a†i1 . . . a
†
iA

ajA . . . aj1

≡
{

a†i1 . . . a
†
iA

ajA . . . aj1

}
+a†i1 aj1

{
a†i2 . . . a

†
iA

ajA . . . aj2

}
− a†i1 aj2

{
a†i2 . . . a

†
iA

ajA . . . aj3 aj1

}
+ singles

+

(
a†i1 aj1 a†i2 aj2 − a†i1 aj2 a†i2 aj1

){
a†i3 . . . a

†
iA

ajA . . . aj3

}
+ doubles

+ . . .+ full contractions.

The two-body operator

a†i a†j al ak =
{

a†i a†j al ak

}
+ a†i ak{a†j al}+ a†j al{a†i ak} − a†i al{a†j ak} − a†j ak{a†i al}

+ a†i ak a†j al − a†i al a
†
j ak .
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Normal-ordered (正规乘积) operators

An important property is that we can freely anticommute creation and annihilation oper-
ators within a normal-ordered string{

. . . a†i aj . . .
}

= −
{
. . . aj a

†
i . . .

}
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Normal-ordered (正规乘积) operators

The product of two norm-ordered operators can be expanded with the help of Wick
theorem: {

a†i1 . . . a
†
iN

ajN . . . aj1

}{
a†k1

. . . a†kM
alM . . . al1

}
= (−1)M·N

{
a†i1 . . . a

†
iN

a†k1
. . . a†kM

ajN . . . aj1 alM . . . al1

}
+(−1)M·Na†i1 al1

{
a†i2 . . . a

†
kM

ajN . . . al2

}
+(−1)(M−1)(N−1)ajN a†k1

{
a†i1 . . . a

†
kM

ajN . . . aj2

}
+ singles + doubles + . . . .

The phase factors appear because we anti-commute the creators and annihilators until
they are grouped in the canonical order, i.e., all a† appear to the left of the a. In the
process, we also encounter a new type of contraction,

ai a
†
j ≡

〈
Φ
∣∣∣ai a
†
j

∣∣∣Φ
〉

=
〈

Φ
∣∣∣δij − a†j ai

∣∣∣Φ
〉

= δij − ρij ≡ ρ̄ij

as expected from the canonical anti-commutator algebra. ρ̄ is the so-called hole density
matrix.
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Normal-ordered (正规乘积) operators

Generally, one has the following relations for arbitrary reference states,{
Aa[b]

cd

}{
Aij

[k ]l

}
= −λb

k

{
Aaij

cdl

}
+ · · ·{

Aab
[c]d

}{
Ai[j]

kl

}
= −ξj

c
{

Aabi
dkl

}
+ · · ·

where in canonical basis

λa
k = δa

k na, ξ
j
c = λ

j
c − δjc = (nj − 1)δjc ≡ −n̄jδjc = −ρ̄cj

1B1B:

{a†i aj}{a†k al} = −{a†i a†k aj al} − a†i al{a†k aj}+ aj a
†
k{a
†
i aj}+ a†i al aj a

†
k

= {a†i a†k al aj} − δil ni{a†k aj}+ n̄jδjk{a†i aj}+ ni n̄jδilδjk . (1)

For short,

{Ai
j}{A

k
l } = {Aik

jl } − δil ni{Ak
j }+ n̄jδjk{Ai

j}+ ni n̄jδilδjk . (2)
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Normal-ordered (正规乘积) operators

Generally, one has the following relations for arbitrary reference states,{
Aa[b]

cd

}{
Aij

[k ]l

}
= −λb

k

{
Aaij

cdl

}
+ · · ·{

Aab
[c]d

}{
Ai[j]

kl

}
= −ξj

c
{

Aabi
dkl

}
+ · · ·

where the sign is determined by the number of permutations. The λ and ξ in canonical
basis are defined as

λa
k = ρa

k = δa
k na, ξ

j
c = λ

j
c − δjc = (nj − 1)δjc ≡ −n̄jδjc = −ρ̄cj

1B2B:

{Aa
b}{A

kl
mn} = {Aakl

bmn}+ (1− P̂mn)λa
n{Akl

bm}+ (1− P̂kl )ξ
l
b{A

ak
mn}

+(1− P̂mn)(1− P̂kl )λ
a
mξ

l
b{A

k
n}

= {Aakl
bmn}+ (1− P̂mn)naδan{Akl

bm} − (1− P̂kl )n̄bδlb{Aak
mn}

−(1− P̂mn)(1− P̂kl )nan̄bδamδlb{Ak
n}. (3)
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Normal-ordered (正规乘积) operators

A product of normal-ordered M and N-body operators has the general form

Â[M]B̂[N] =
M+N∑

k=|M−N|
Ĉ[k ]

Note that zero-body contributions, i.e., plain numbers, can only be generated if both
operators have the same particle rank.
M. Hjorth-Jensen et al., An advanced course in computational nuclear physics, Lecture
notes in Physics, 2017
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Normal-ordered (正规乘积) operators

The commutator between two normal-ordered operators[{
Aab

cd

}
,
{

Aij
kl

}]
=
{

Aa[b]
cd

}{
Aij

[k ]l

}
−
{

Aij
[k ]l

}{
Aa[b]

cd

}
= −λb

k

{
Aaij

cdl

}
+ ξb

k

{
Aaij

cdl

}
+ · · ·

= −δbk

{
Aaij

cdl

}
+ · · · ,

where
λb

k − ξ
b
k = δbk .

1B1B:

[{Aa
b}, {A

k
l }] = −δal{Ak

b}+ δbk{Aa
l }+ (nan̄b − n̄anb)δalδbk . (4)

where
(nan̄b − n̄anb) = na(1− nb)− (1− na)nb = na − nb.
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Normal-ordered (正规乘积) operators

The commutator between two normal-ordered operators[{
Aab

cd

}
,
{

Aij
kl

}]
=
{

Aa[b]
cd

}{
Aij

[k ]l

}
−
{

Aij
[k ]l

}{
Aa[b]

cd

}
= −λb

k

{
Aaij

cdl

}
+ ξb

k

{
Aaij

cdl

}
+ · · ·

= −δbk

{
Aaij

cdl

}
+ · · · ,

where
λb

k − ξ
b
k = δbk .

1B2B:

[{Aa
b}, {A

kl
mn}] = −(1− P̂mn)δam{Akl

bn}+ (1− P̂kl )δbk{Aal
mn}

+(1− P̂kl )(1− P̂mn)(na − nb)δanδbl{Ak
m}. (5)
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The variational principle
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The variational principle

Assuming |Ψk 〉s are a set of eigenfunctions of the Hamiltonian H,

Ĥ|Ψk 〉 = Ek |Ψk 〉.

All the |Ψk 〉s span the Hilbert space and 〈Ψk |Ψk′ 〉 = δkk′ .
Any function |Φ〉 certainty can be expanded in terms of |Ψk 〉s,

|Φ〉 =
∑

k

ck |Ψk 〉,
∑

k

|ck |2 = 1.

where k = 0, 1, 2, · · · ordered in ascending energy.
The energy expectation value of the Hamiltonian

〈Φ|Ĥ|Φ〉 =
∞∑

k=0

|ck |2Ek = |c0|2E0 +
∞∑

k=1

|ck |2Ek

= E0(1−
∞∑

k=1

|ck |2) +
∞∑

k=1

|ck |2Ek

= E0 +
∞∑

k=1

|ck |2(Ek − E0) ≥ E0
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The variational principle

Only in the case that c0 = 1 and ck>0 = 0, i.e,

|Φ〉 = |Ψ0〉

the energy expectation value of the Hamiltonian is E0.
In other words, the ground state wave function is obtained when the energy
expectation value of the Hamiltonian takes the lowest value,

δ〈Φ|Ĥ|Φ〉 = 0, 〈Φ|Φ〉 = 1

which is equivalent to the following equation

〈δΦ|Ĥ|Φ〉 − λ〈δΦ|Φ〉 = 0.

If 〈δΦ| is an arbitrary vector, one recovers the Schoerdinger equation,

Ĥ|Φ〉 − λ|Φ〉 = 0.

In practical calculations, approximation is employed while constructing the trial
wave function |Φ〉. In this case, the trial wave function is not arbitrary. The
variational principle cannot lead to the exact ground-state eigenfunction |Ψ0〉 of
the Ĥ.
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The HF approximation
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The HF equation

The Hartree-Fock approximation: the wave function of A-body systems is
approximated as a Slater determinant,

|Φ〉 =
A∏

i=1

a†i |−〉.

Let’s consider a Hamiltonian composed of one-body kinetic energy term and
two-body interaction operators

Ĥ =
∑
k1k2

tk1
k2

Ak1
k2

+
1
4

∑
k1k2k3k4

v̄k1k2
k3k4

Ak1k2
k3k4

= E0 +
∑
k1k2

f k1
k2
{Ak1

k2
}+

1
4

∑
k1k2k3k4

Γ
k1k2
k3k4
{Ak1k2

k3k4
},

where according to the Wick theorem,

Ak1
k2

= {Ak1
k2
}+ 〈Φ|Ak1

k2
|Φ〉,

Ak1k2
k3k4

= {Ak1k2
k3k4
}+ (1− P̂12)(1− P̂34){Ak1

k3
}〈Φ|Ak2

k4
|Φ〉+ (1− P̂34)〈Φ|Ak1

k3
|Φ〉〈Φ|Ak2

k4
|Φ〉
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The HF equation

The Hamiltonian is rewritten in terms of the normal-ordered operators ( Homework:
prove the below relation using the Wick theorem)

Ĥ = E0 +
∑
k1k3

f k1
k3
{Ak1

k3
}+

1
4

∑
k1k2k3k4

Γ
k1k2
k3k4
{Ak1k2

k3k4
},

where
E0 = 〈Φ|Ĥ|Φ〉

=
∑
k1k2

tk1
k2
ρ

k1
k2

+
1
2

∑
k1k2k3k4

v̄k1k2
k3k4

ρ
k1
k3
ρ

k2
k4
,

f k1
k3

= tk1
k3

+
∑
k2k4

v̄k1k2
k3k4

ρ
k2
k4
,

Γ
k1k2
k3k4

= v̄k1k2
k3k4

.

and we define the density matrix element

ρ
k2
k4

= 〈Φ|Ak2
k4
|Φ〉.
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The HF equation

The derivation of HF equation: basis transformation∑
kl

f k
l {A

k
l } =

∑
k′ l′

f k′
l′ {A

k′
l′ },

where the matrix element f k′
l′ is the matrix element of the one-body operator in a

new (a.k.a. canonical) basis and it has a diagonal form,

f k′
l′ = εk′δk′

l′ .

In other words, there is a unitary transformation U, which diagonalizes the
one-body matrix F ,

U†FU = diag(ε1, ε2, · · · ).
Thus, substituting the expression for the f k

l and transforming into the canonical
basis, one finds

tk
l +

∑
ij

v̄ki
lj ρ

i
j = εkδ

k
l ,

where the one-body density is given by

ρi
j =

 δi
j , εi ≤ εF ,

0 , εi > εF .
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The HF equation

Finally, one obtains the HF equation:

f k
l = tk

l +
∑
εi≤εF

v̄ki
li = εkδ

k
l
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The HF equation

Another way to derive the HF equation: The energy expectation value can be
written as

E0 = 〈Φ|Ĥ|Φ〉 =
∑
εi≤εF

t i
i +

1
2

∑
εi≤εF ,εj≤εF

v̄ ij
ij

=
∑
εi≤εF

〈φi |(−
~2

2m
∇2)|φi 〉+

1
2

∑
εi≤εF ,εj≤εF

(〈ij|V (~r1,~r2)|ij〉 − 〈ij|V (~r1,~r2)|ji〉)

where the second term is

(〈ij|V (~r1,~r2)|ij〉 − 〈ij|V (~r1,~r2)|ji〉)

=

∫
d3~r1

∫
d3~r2φ

∗
i (~r1)φ∗j (~r2)v(~r1,~r2)

[
φi (~r1)φj (~r2)− φj (~r1)φi (~r2)

]
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The HF equation

The energy variation with respect to single-particle wave function φ∗i (~r1) (the factor 1/2
is removed considering the identical particles of 1 and 2 )

∂

∂φ∗i (~r1)

[
E0 − εi

∫
φ∗i (~r1)φi (~r1)

]

= (−
~2

2m
∇2)φi (~r2) +

∫
d3~r2φ

∗
j (~r2)v(~r1,~r2)φi (~r1)φj (~r2)

−
∫

d3~r2φ
∗
j (~r2)v(~r1,~r2)φj (~r1)φi (~r2)− εiφi (~r1)

≡ (−
~2

2m
∇2)φi (~r1) + VH (~r1)φi (~r1)−

∫
d3~r2VF (~r1,~r2)φi (~r2)− εiφi (~r1), (6)

where
VH (~r1) =

∑
εj≤εF

∫
d3~r2φ

∗
j (~r2)v(~r1,~r2)φj (~r2),

VF (~r1,~r2) =
∑
εj≤εF

φ∗j (~r2)v(~r1,~r2)φj (~r1).

Thus, the variational principle leads to the HF equation in coordinate space

−
~2

2m
∇2φi (~r1) + VH (~r1)φi (~r1)−

∫
d3~r2VF (~r1,~r2)φi (~r2) = εiφi (~r1).
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The density matrix
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The density matrix

Given a many-particle state |Φ〉, the one-particle density matrix is defined as

ρl
k = ρkl ≡

〈
Φ
∣∣∣â†l âk

∣∣∣Φ
〉

where k and l run over the one-particle basis states.

|Φ〉 need not be a simple Slater determinant built out of these states but can be a
general superposition of such Slater determinants.

The one-particle density matrix depends on both the state |Φ〉 and the
single-particle basis defined by a†k , al .

ρkl is hermitian: ρkl = ρ∗lk

If |Φ〉 is a simple Slater determinant, the density matrix element

ρi
j =

 δi
j , εi ≤ εF ,

0 , εi > εF .
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The excited states
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The excited states

excitation configurations:
The one-particle one-hole excitation configuration on top of the HF state,

|Φm
i 〉 ≡ |m, i〉 = a†mai |Φ〉

The two-particle two-hole excitation configuration on top of the HF state,

|Φmn
ij 〉 ≡ |mn, ij〉 = a†ma†nai aj |Φ〉

Energies of excitation configurations:
The energy of the one-particle one-hole excitation configuration

Em
i ≡ 〈mi|H|mi〉 = 〈Φ|a†i amHa†mai |Φ〉 = E0 + εm − εi − v̄mimi .

Homework: prove the above relation.
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The excited states

The energy of one-particle removed configuration is given by

Ej = 〈Φ|a†j Haj |Φ〉 =
∑
i 6=j

tii +
1
2

∑
i1,i2 6=j

v̄i1 i2 i1 i2

and the difference from the ground-state energy becomes

Ej − EHF = −tjj −
1
2

∑
i

v̄ijij −
1
2

∑
i

v̄jiji

= −tjj −
∑

i

v̄ijij

= −εj

Here the symmetry of the matrix elements v̄ijj = v̄jiji was used. Thus the single-particle
energy εj indicates the energy required to remove a particle from the nucleus. This is
the contents of Koopman’s theorem.
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The HF approach with Skyrme forces
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The Skyrme HF

The Skyrme interaction is a sum of two- and three-body parts,

Ĥ =
∑

i

t̂i +
∑
i<j

v (2)
ij +

∑
i<j<k

v (3)
ijk

the two body part was given by

v (2)
12 =t0

(
1 + x0P̂σ

)
δ (r1 − r2)

+
1
2

t1
(
δ (r1 − r2) k̂2 + k̂ ′2δ (r1 − r2)

)
+ t2k̂ · δ (r1 − r2) k̂ ′ + iW0 (σ̂1 + σ̂2) · k̂ ′ × δ (r1 − r2) k̂

and the three-body part by

v (3)
123 = t3δ (r1 − r2) δ (r2 − r3)

D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)
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The Skyrme HF

The operators k̂ and k̂
′

are defined as

k̂ =
1
2i

(−→
∇1 −

−→
∇2

)
, k̂

′
= −

1
2i

(←−
∇1 −

←−
∇2

)
and that k̂

′
acts to the left.

The expectation value of the Hamiltonian in a Slater determinant |HF〉 is given by

E = 〈HF|Ĥ|HF〉

=
∑

i

〈i |̂t |i〉+
1
2

∑
ij

〈
ij
∣∣∣v̄ (2)

∣∣∣ ij〉+
1
6

∑
ijk

〈
ijk
∣∣∣v̄ (3)

∣∣∣ ijk〉
The energy can be rewritten as a spatial integral over a Hamiltonian density,

E =

∫
d3rĤ(r).

D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)
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The Skyrme HF

家庭作业选做题：在HF近似下，推导Skyrme核力对应的能量密度表达式Ĥ(r):

Ĥ(r) =
~2

2m
τ(r) +

1
2

t0

[(
1 +

1
2

x0

)
ρ2 −

(
x0 +

1
2

)(
ρn

2 + ρ2
p

)]
+

1
4

(t1 + t2) ρτ +
1
8

(t2 − t1) (ρnτn + ρpτp) +
1

16
(t2 − 3t1) ρ∇2ρ

+
1

32
(3t1 + t2)

(
ρn∇2ρn + ρp∇2ρp

)
+

1
16

(t1 − t2)
(
~J2

n + ~J2
p

)
+

1
4

t3ρnρpρ+ ĤC(r)−
1
2

W0

(
ρ~∇ · ~J + ρn ~∇ · ~Jn + ρp ~∇ · ~Jp

)
where the Coulomb energy

ĤC(r) =
1
2
ρ(r)

∫
dr′

e2

|r− r′|
ρ(r′)dr′

and densities are defined as (q = n, p, and ρ = ρn + ρp)

ρq(r) =
∑

i,σ |φi (r, σ, q)|2

τa(r) =
∑

i,σ

∣∣∣~∇φi (r, σ, q)
∣∣∣2 ,

~Jq(r) = (−i)
∑

i,σ,σ′ φ∗i (r, σ, q)
[
~∇φi (r, σ′, q)× 〈σ|~σ|σ′〉

]
D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)
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The limits of the nuclear landscape by Skyrme DFT approach

Several Skyrme interactions were used

The number of bound nuclides with between 2 and 120 protons is around 7,000.

J. Erler et al., Nature 486, 509–512 (2012)
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The Skyrme HF for nuclear masses

Different DFT mass tables are compiled and can be downloaded here:
http://massexplorer.frib.msu.edu/content/DFTMassTables.html
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