Pairing correlation between nucleons and the BCS theory

Jiangming Yao（尧江明）
中山大学物理与天文学院

Outline

1 Introduction

2 The two-particle system

3 Pairing in the degenerate single- j model

- Two particles in the degenerate single-j model

■ N particles in the degenerate single-j model

4 The BCS theory

Introduction

Introduction: evidence of pairing correlation

Nucleon Pairs

Figure 6.1. Excitation spectra of the ${ }_{50} \mathrm{Sn}$ isotopes.

■ even-even nuclei are bound more tightly than odd nuclei.

- in even-even nuclei there is an energy gap of $1-2 \mathrm{MeV}$ between the ground state and the lowest single-particle excitation.

Introduction: evidence of pairing correlation

Nr. 16

Fig. 17. Moments of inertia of even-even nuclei in region I. The figure exhibits by the crossed line the rigid moment of inertia corresponding to $R_{0}=1.2 \times A^{1 / 3} f$. The empirical values given as filled circles do not include any correction for the rotation-vibration interaction. The dashed and dot-and-dash lines refer to calculations corresponding to the choice of $\Delta_{p}=P_{p}$ and $\Delta_{n}=P_{n}$ with an assumed single-particle level spectrum $\varepsilon_{\boldsymbol{v}}$ as given according to the alternative cases

A and B of table I .

To explain the moment of inertia we need to take into the account nuclear pairing interaction.

Introduction: occupation probability

Neutrons in ${ }^{44} \mathrm{Mg}$

The two-particle system

The wave function of two-particle system

The normalized angular-momentum (J) coupled wave function of two-particle system:

$$
\begin{aligned}
|a b ; J M\rangle & =\mathcal{N}_{a b}(J)\left[c_{a}^{\dagger} c_{b}^{\dagger}\right]_{J M}|0\rangle \\
& =\mathcal{N}_{a b}(J) \sum_{m_{\alpha} m_{\beta}} c_{j_{a} m_{\alpha} j_{b} m_{\beta}}^{J M} c_{\alpha}^{\dagger} c_{\beta}^{\dagger}|0\rangle \\
\mathcal{N}_{a b}(J) & =\frac{\sqrt{1+\delta_{a b}(-1)^{J}}}{1+\delta_{a b}}
\end{aligned}
$$

where $\mathcal{N}_{a b}(J)$ is a normalization factor. The label a stands for $n_{a} l_{a} j_{a}$. The $C_{j_{a} m_{\alpha} j_{b} m_{\beta}}^{J M}$ is the Clebsch-Gordon coefficient.

The wave function of two-particle system

- The Clebsch-Gordan (CG) coefficients:

Let \mathbf{j}_{1} and \mathbf{j}_{2} be two angular momenta with projections m_{1} and m_{2} on the quantization axis. A CG coefficients represents the probability amplitude that \mathbf{j}_{1} and \mathbf{j}_{2} are coupled into a resultant angular momentum \mathbf{j} with projection m. In accordance with the vector addition rules $\mathbf{j}_{1}+\mathbf{j}_{2}=\mathbf{j}$, the CG coefficient vanishes unless the triangular conditions (triangular inequalities) are fulfilled, i.e.,

$$
\left|j_{1}-j_{2}\right| \leq j \leq j_{1}+j_{2}
$$

and the requirement

$$
m_{1}+m_{2}=m
$$

is satisfied. The CG coefficients satisfy the following conditions:
$1 j_{1}, j_{2}, j$ are integer or half-integer non-negative numbers;
$2 m_{1}, m_{2}, m$ are integer or half-integer (positive or negative) numbers;
$3\left|m_{1}\right| \leq j_{1},\left|m_{2}\right| \leq j_{2},|m| \leq j$
$4 j_{1}+m_{1}, j_{2}+m_{2}, j+m, j_{1}+j_{2}+j$ are integer non-negative numbers.
$5 \sum_{j=\left|j_{1}-j_{2}\right|}^{j_{1}+j_{2}}(2 j+1)=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)$.
The absolute value of a CG coefficient is given by $\Omega=(\alpha, \beta, \gamma)$

$$
\left|C_{j_{1} m_{1} j_{2} m_{2}}^{j m}\right|^{2}=\frac{2 j+1}{8 \pi} \int_{0}^{2 \pi} d \alpha \int_{0}^{\pi} d \beta \sin \beta \int_{0}^{2 \pi} d \gamma D_{m_{1} m_{1}}^{j_{1}}(\Omega) D_{m_{2} m_{2}}^{j_{2}}(\Omega) D_{m m}^{j *}(\Omega)
$$

The phase of the CG coefficients may be chosen in different ways. If the Condon-Shortley convention is chosen, the CG coefficients are real.

The wave function of two-particle system

- The Clebsch-Gordan (CG) coefficients:

The CG coefficients are elements of the unitary matrix which performs direct and inverse transformations between state vectors $\left|j_{1} m_{1} j_{2} m_{2}\right\rangle$ and $\left|j_{1} j_{2} j m\right\rangle$

$$
C_{j_{1} m_{1} j_{2} m_{2}}^{j m}=\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{1} j_{2} j m\right\rangle=\left\langle j_{1} j_{2} j m \mid j_{1} m_{1} j_{2} m_{2}\right\rangle
$$

The unitarity relation is

$$
\begin{gathered}
\sum_{m_{1} m_{2}} C_{j_{1} m_{1} j_{2} m_{2}}^{j m} C_{j_{1} m_{1} j_{2} m_{2}}^{j^{\prime}}=\delta_{j j^{\prime}} \delta_{m m^{\prime}} \\
\sum_{j(m)} C_{j_{1} m_{1} j_{2} m_{2}}^{j} C_{j_{1} m_{1}^{\prime} j_{2} m_{2}^{\prime}}^{j=}=\delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}}
\end{gathered}
$$

The direct product of two irreducible tensors $\mathfrak{T}_{j_{1} m_{1}}$ and $\Re_{j_{2} m_{2}}$ may be decomposed into irreducible tensors. The coefficients of this decomposition are just the Clebsch-Gordan coefficients:

$$
\mathfrak{T}_{j_{1} m_{1}} \Re_{j_{2} m_{2}}=\sum_{j(m)} C_{j_{1} m_{1} j_{2} m_{2}}^{j m}\left\{\mathfrak{T}_{j_{1}} \otimes \Re_{j_{2}}\right\}_{j m}
$$

The inverse relation is

$$
\left\{\mathfrak{T}_{j_{1}} \otimes \mathfrak{u}_{j_{2}}\right\}_{j m}=\sum_{m_{1} m_{2}} C_{j_{1} m_{1} j_{2} m_{2}}^{j m} \mathfrak{T}_{j_{1} m_{1}} \mathfrak{N}_{j_{2} m_{2}} .
$$

The wave function of two-particle system

■ The Wigner 3jm symbol and Clebsch-Gordan (CG) coefficients:
The Wigner 3jm symbols are usually used instead of the CG coefficients. These symbols possess simpler symmetry properties. The 3jm symbols are related to the CG coefficient by

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & m_{3}
\end{array}\right)=(-1)^{j_{j}+m_{3}+2 j_{1}} \frac{1}{\sqrt{2 j_{3}+1}} C_{j_{1}-m_{1} j_{2}-m_{2}}^{j_{3} m_{3}}
$$

The inverse relation is

$$
C_{j_{1} m_{1} j_{2} m_{2}}^{j_{3} m_{3}}=(-1)^{j_{1}-j_{2}+m_{3}} \sqrt{2 j_{3}+1}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
m_{1} & m_{2} & -m_{3}
\end{array}\right)
$$

■ Symmetries in the CG coefficients:

$$
\begin{aligned}
C_{a b b \beta}^{c \gamma} & =(-1)^{a+b-c} C_{b \beta a \alpha}^{c \gamma}=(-1)^{a-\alpha} \sqrt{\frac{2 c+1}{2 b+1}} C_{a \alpha c-\gamma}^{b-\beta}=(-1)^{a-\alpha} \sqrt{\frac{2 c+1}{2 b+1}} C_{c \gamma a-\alpha}^{b \beta} \\
& =(-1)^{b+\beta} \sqrt{\frac{2 c+1}{2 a+1}} C_{c-\gamma b \beta}^{a-\alpha}=(-1)^{b+\beta} \sqrt{\frac{2 c+1}{2 a+1}} C_{b-\beta c \gamma}^{a \alpha} \\
C_{a \alpha b \beta}^{c \gamma} & =(-1)^{a+b-c} C_{a-\alpha b-\beta}^{c-\gamma}
\end{aligned}
$$

The wave function of two-particle system

■ Symmetries in the 3jm symbols:
Permutations of columns

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
\alpha & \beta
\end{array}\right) & =\left(\begin{array}{lll}
b & c & a \\
\beta & \gamma & \alpha
\end{array}\right)=\left(\begin{array}{lll}
c & a & b \\
\gamma & \alpha & \beta
\end{array}\right)=(-1)^{a+b+c}\left(\begin{array}{lll}
a & c & b \\
\alpha & \gamma & \beta
\end{array}\right) \\
& =(-1)^{a+b+c}\left(\begin{array}{lll}
b & a & c \\
\beta & \alpha & \gamma
\end{array}\right)=(-1)^{a+b+c}\left(\begin{array}{lll}
c & b & a \\
\gamma & \beta & \alpha
\end{array}\right)
\end{aligned}
$$

Change of signs of momentum projections

$$
\left(\begin{array}{lll}
a & b & c \\
\alpha & \beta & \gamma
\end{array}\right)=(-1)^{a+b+c}\left(\begin{array}{rrr}
a & b & c \\
-\alpha & -\beta & -\gamma
\end{array}\right)
$$

The wave function of two-particle system

- The two-body interaction in J-coupled form:

Making use of the following relation,

$$
|\alpha \beta\rangle=c_{\alpha}^{\dagger} c_{\beta}^{\dagger}|0\rangle=\sum_{J M} C_{j_{a} m_{\alpha} j_{b} m_{\beta}}^{J M}\left[\mathcal{N}_{a b}(J)\right]^{-1}|a b ; J M\rangle
$$

one can rewrite the two-body interaction as follows

$$
\begin{aligned}
V & =\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\langle\alpha \beta| V|\gamma \delta\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma} \\
& =\frac{1}{4} \sum_{\alpha \beta \gamma \delta}\left[\mathcal{N}_{a b}(J) \mathcal{N}_{c d}\left(J^{\prime}\right)\right]^{-1} C_{j_{a} m_{\alpha} j_{b} m_{\beta}}^{J M} C_{j_{c} m_{\gamma} j_{d} m_{\delta}}^{J^{\prime} m^{\prime}}\langle a b ; J M| V\left|c d ; J^{\prime} M^{\prime}\right\rangle c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\delta} c_{\gamma}
\end{aligned}
$$

Converting the annihilation operators into spherical tensors yields

$$
c_{\delta} c_{\gamma}=(-1)^{j_{d}-m_{\delta}} \tilde{c}_{-\delta}(-1)^{j_{c}-m_{\gamma}} \tilde{c}_{-\gamma}=(-1)^{j_{c}+j_{d}-\left(m_{\gamma}+m_{\delta}\right)+1} \tilde{c}_{-\gamma} \tilde{c}_{-\delta}
$$

By summing over the $m_{\alpha, \beta, \gamma, \delta}$, we obtain

$$
\begin{gathered}
V=\frac{1}{4} \sum_{a b c d ; J M J^{\prime} M^{\prime}}\left[\mathcal{N}_{a b}(J) \mathcal{N}_{c d}\left(J^{\prime}\right)\right]^{-1}\langle a b ; J M| V\left|c d ; J^{\prime} M^{\prime}\right\rangle \\
\times\left[c_{a}^{\dagger} c_{b}^{\dagger}\right]_{J M}(-1)^{J^{\prime}+M^{\prime}+1}\left[\tilde{c}_{c} \tilde{c}_{d}\right]_{J^{\prime},-M^{\prime}}
\end{gathered}
$$

The wave function of two-particle system

Considering the fact that the two-body interaction V is a scalar with rank $\lambda=0$, thus,

$$
\langle a b ; J M| V\left|c d^{\prime} ; J^{\prime} M^{\prime}\right\rangle \equiv \delta_{J J^{\prime}} \delta_{M M^{\prime}}\langle a b ; J| V|c d ; J\rangle
$$

The resulting expression for V is

$$
\begin{aligned}
V & =-\frac{1}{4} \sum_{J} \sum_{a b c d}\left[\mathcal{N}_{a b}(J) \mathcal{N}_{c d}(J)\right]^{-1}\langle a b ; J| V|c d ; J\rangle \sum_{M}(-1)^{J+M}\left[c_{a}^{\dagger} c_{b}^{\dagger}\right]_{J M}\left[\tilde{c}_{c} \tilde{c}_{d}\right]_{J,-M} \\
& =-\frac{1}{4} \sum_{J} \sum_{a b c d}\left[\mathcal{N}_{a b}(J) \mathcal{N}_{c d}(J)\right]^{-1} \sqrt{2 J+1}\langle a b ; J| V|c d ; J\rangle\left[\left[c_{a}^{\dagger} c_{b}^{\dagger}\right]_{J}\left[\tilde{c}_{c} \tilde{c}_{d}\right]_{J}\right]_{00}
\end{aligned}
$$

where the following relation is used

$$
C_{J M J-M}^{00}=\frac{(-1)^{J-M}}{\sqrt{2 J+1}}
$$

The wave function of two-particle system

The unnormalized two-body matrix element is defined as

$$
\langle a b ; J| V|c d ; J\rangle_{\text {unnorm }}=\sum_{\substack{m_{\alpha} m_{\beta} \\ m_{\gamma} m_{\delta}}}\left\langle j_{a} m_{\alpha} j_{b} m_{\beta} \mid J M\right\rangle\left\langle j_{c} m_{\gamma} j_{d} m_{\delta} \mid J M\right\rangle \bar{v}_{\alpha \beta \gamma \delta} .
$$

The normalized two-body matrix element is defined as

$$
\begin{aligned}
\langle a b ; J| V|c d ; J\rangle & =\mathcal{N}_{a b}(J) \mathcal{N}_{c d}(J) \sum_{\substack{m_{\alpha} m_{\beta} \\
m_{\gamma} m_{\delta}}}\left\langle j_{a} m_{\alpha} j_{b} m_{\beta} \mid J M\right\rangle\left\langle j_{c} m_{\gamma} j_{d} m_{\delta} \mid J M\right\rangle \bar{v}_{\alpha \beta \gamma \delta} \\
& =\mathcal{N}_{a b}(J) \mathcal{N}_{c d}(J) \cdot\langle a b ; J| V|c d ; J\rangle_{\text {unnorm }} .
\end{aligned}
$$

From J-coupled two-body matrix element to the m-scheme one

$$
\begin{aligned}
\bar{v}_{\alpha \beta \gamma \delta} & =\sum_{J M}\left[\mathcal{N}_{a b}(J) \mathcal{N}_{c d}(J)\right]^{-1}\left\langle j_{a} m_{\alpha} j_{b} m_{\beta} \mid J M\right\rangle\left\langle j_{c} m_{\gamma} j_{d} m_{\delta} \mid J M\right\rangle\langle a b ; J| V|c d ; J\rangle \\
& =\sum_{J M}\left\langle j_{a} m_{\alpha} j_{b} m_{\beta} \mid J M\right\rangle\left\langle j_{c} m_{\gamma} j_{d} m_{\delta} \mid J M\right\rangle \cdot\langle a b ; J| V|c d ; J\rangle_{\text {unnorm }}
\end{aligned}
$$

The two-particle system with a pure pairing force

Considering the two-particle system with $T=1$ (nn or pp) in a single j-shell ($\delta_{a b}=1$, only even J nonzero). The normalization factor becomes,

$$
\mathcal{N}_{a b}(J)=\frac{1}{\sqrt{2}} \delta_{J, \text { even }}
$$

The two-body interaction is simplified as (a,b,c,d are restricted to the same quantum number $n l j$)

$$
\begin{aligned}
V & =-\frac{1}{4} \sum_{J} \sum_{a b c d}\left[\mathcal{N}_{a b}(J) \mathcal{N}_{c d}(J)\right]^{-1} \sqrt{2 J+1}\langle a b ; J| V|c d ; J\rangle\left[\left[c_{a}^{\dagger} c_{b}^{\dagger}\right]_{J}\left[\tilde{c}_{c} \tilde{c}_{d}\right]_{J}\right]_{00} \\
& =-\frac{1}{2} \sum_{J} \sqrt{2 J+1}\langle j j ; J| V|j j ; J\rangle\left[\left[c_{j}^{\dagger} c_{j}^{\dagger}\right]_{J}\left[\tilde{c}_{j} \tilde{c}_{j}\right]_{J}\right]_{00}
\end{aligned}
$$

If only the $J=0$ component is considered, one finds

$$
\begin{aligned}
V_{J=0} & =-\frac{1}{2}\langle j j ; 0| V|j ; 0\rangle\left[c_{j}^{\dagger} c_{j}^{\dagger}\right]_{0}\left[\tilde{c}_{j} \tilde{c}_{j}\right]_{0} \\
& =-\frac{1}{2}\langle j j ; 0| V|j j ; 0\rangle \sum_{m m^{\prime}} C_{j m j m^{\prime}}^{00} c_{j m}^{\dagger} c_{j m^{\prime}}^{\dagger} \sum_{m^{\prime \prime} m^{\prime \prime \prime}} C_{j m^{\prime \prime} j m^{\prime \prime \prime}}^{00} \tilde{c}_{j m^{\prime \prime}} \tilde{c}_{j m^{\prime \prime \prime}} \\
& =-\frac{1}{2}\langle j j ; 0| V|j j ; 0\rangle \sum_{m}(-1)^{j-m} \frac{1}{\sqrt{2 j+1}} c_{j m}^{\dagger} c_{j-m}^{\dagger} \sum_{m^{\prime}}(-1)^{j-m^{\prime}} \frac{1}{\sqrt{2 j+1}} \tilde{c}_{j m^{\prime}} \tilde{c}_{j-m^{\prime}}
\end{aligned}
$$

The two-particle system with a pure pairing force

In terms of the spherical tensor operators

$$
\tilde{c}_{j m}^{\dagger}=(-1)^{j+m} c_{j-m}^{\dagger}, \quad \tilde{c}_{j-m}=(-1)^{j-m} c_{j m}
$$

one finds

$$
\begin{aligned}
V_{J=0} & =\frac{1}{2}\langle j j ; 0| V|j j ; 0\rangle \frac{1}{2 j+1} \sum_{m m^{\prime}} c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger} \tilde{c}_{j m^{\prime}} c_{j m^{\prime}} \\
& =2\langle j j ; 0| V|j j ; 0\rangle \frac{1}{2 j+1} \sum_{m, m^{\prime}>0} c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger} \tilde{c}_{j m^{\prime}} c_{j m^{\prime}} \\
& \equiv-G \sum_{m, m^{\prime}>0} c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger} \tilde{c}_{j m^{\prime}} c_{j m^{\prime}}
\end{aligned}
$$

where we have defined the constant G as

$$
G=-\frac{2}{2 j+1}\langle j j ; 0| V|j j ; 0\rangle,
$$

which is the so-called pairing strength and has to be positive so that the pairing interaction $V_{J=0}$ is attractive.

Pairing in the degenerate single-j model

The two-particle system in single- j

Considering two particles in a single j-shell with only a pairing interaction:

Figure: The single-j shell with the single-particle energy $\varepsilon_{j}=0$.

■ Hamiltonian:

$$
H=-G \sum_{m, m^{\prime}>0} c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger} \tilde{c}_{j m^{\prime}} c_{j m^{\prime}} .
$$

Expanding the wave function of the two-particle in terms of the two-particle basis constructed as

$$
|\Psi(1,2)\rangle=\sum_{m>0} c_{m}\left|\Phi_{m}(1,2)\right\rangle, \quad\left|\Phi_{m}(1,2)\right\rangle=A_{j m}^{\dagger}|0\rangle=c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger}|0\rangle,
$$

where $m=1 / 2,3 / 2, \cdots, j$ with the dimension $\Omega=j+1 / 2$.

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

Figure: The single-j shell with the single-particle energy $\varepsilon_{j}=0$.

- The eigenvalue problem:

$$
H C=E C
$$

with the matrix element is determined by

$$
\begin{aligned}
H_{m m^{\prime}} & =\left\langle\Phi_{m}(1,2)\right| H\left|\Phi_{m}^{\prime}(1,2)\right\rangle \\
& =\left\langle\Phi_{m}(1,2)\right|-G \sum_{m_{1} m_{2}>0} c_{j m_{1}}^{\dagger} \tilde{c}_{j m_{1}}^{\dagger} \tilde{c}_{j m_{2}} c_{j m_{2}}\left|\Phi_{m}^{\prime}(1,2)\right\rangle \\
& =-G \sum_{m_{1}, m_{2}>0}\langle 0| \tilde{c}_{j m} c_{j m} c_{j m_{1}}^{\dagger} \tilde{c}_{j m_{1}}^{\dagger} \tilde{c}_{j m_{2}} c_{j m_{2}} c_{j m^{\prime}}^{\dagger} \tilde{c}_{j m^{\prime}}^{\dagger}|0\rangle=-G .
\end{aligned}
$$

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

Figure: The single- j shell with the single-particle energy $\varepsilon_{j}=0$.

- The Hamiltonian matrix is a $\Omega \times \Omega$ matrix,

$$
H=-G\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

The characteristic determinant is

$$
(-G \Omega-E)(-E)^{\Omega-1}=0
$$

from which one finds the eigenvalues

$$
E_{1}=-\Omega G, \quad E_{i}=0 \text { for } i=2,3, \cdots, \Omega
$$

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

Figure: The single-j shell with the single-particle energy $\varepsilon_{j}=0$.

- The wave function of the first (lowest-energy) state

$$
\psi_{1}=\frac{1}{\sqrt{\Omega}}\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

In occupation number representation

$$
\left|\Psi_{1}\right\rangle=\frac{1}{\sqrt{\Omega}} \sum_{m>0} A_{j m}^{\dagger}|0\rangle=\frac{1}{\sqrt{2}} \sum_{m} \frac{(-1)^{j+m}}{\sqrt{2 j+1}} c_{j m}^{\dagger} c_{j,-m}^{\dagger}|0\rangle=-\frac{1}{\sqrt{2}}\left[c_{j}^{\dagger} c_{j}^{\dagger}\right]_{00}|0\rangle
$$

The seniority model

Considering N fermions in a single j-shell:

Figure: The single-j shell with the single-particle energy $\varepsilon_{j}=0$.
■ Hamiltonian:

$$
\begin{aligned}
H & =-G \sum_{m, m^{\prime}>0} c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger} \tilde{c}_{j m^{\prime}} c_{j m^{\prime}} \\
& =-G \hat{S}_{+} \hat{S}_{-}
\end{aligned}
$$

We define a quasi-spin operator

$$
\hat{S}_{+} \equiv \sum_{m>0} S_{+}^{(m)}=\sum_{m>0} c_{j m}^{\dagger} \tilde{c}_{j m}^{\dagger} \text { and } \hat{S}_{-}=\left(\hat{S}_{+}\right)^{\dagger}
$$

and

$$
S_{+}^{(m)}=c_{m}^{+} \tilde{c}_{m}^{+}, \quad S_{-}^{(m)}=\tilde{c}_{m} c_{m}, \quad S_{0}^{(m)}=\frac{1}{2}\left(c_{m}^{+} c_{m}+\tilde{c}_{m}^{+} \tilde{c}_{m}-1\right)
$$

where $\tilde{c}_{m}^{+} \tilde{c}_{m}=c_{-m}^{+} c_{-m}$.

The seniority model

Considering N fermions in a single j-shell:

Figure: The single-j shell with the single-particle energy $\varepsilon_{j}=0$.

Commutation relations

$$
\begin{aligned}
& {\left[S_{+}^{(m)}, S_{-}^{(m)}\right]=2 S_{0}^{(m)}} \\
& {\left[S_{0}^{(m)}, S_{ \pm}^{(m)}\right]= \pm S_{ \pm}^{(m)}}
\end{aligned}
$$

The seniority model

■ Define total quasi-spin operator: $\quad \vec{S}=\sum_{m>0} \vec{S}^{(m)}$

$$
\begin{aligned}
H & =-G \hat{S}_{+} \hat{S}_{-} \\
& =-G\left[\left(\hat{S}_{x}+i \hat{S}_{y}\right)\left(\hat{S}_{x}-i \hat{S}_{y}\right)\right] \\
& =-G\left(\vec{S}^{2}-S_{0}^{2}+S_{0}\right)
\end{aligned}
$$

where we used the relation $\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hat{S}_{0}$, and

$$
S_{0}=\frac{1}{2} \sum_{m>0}\left(c_{m}^{+} c_{m}+c_{-m}^{+} c_{-m}-1\right)=\frac{1}{2}(\widehat{N}-\Omega)
$$

with $\Omega=j+1 / 2$.

- The energy:

$$
E=-G\left[S(S+1)-\frac{1}{4}(N-\Omega)^{2}+\frac{1}{2}(N-\Omega)\right]
$$

The seniority model

■ Introducing the seniority quantum number（辛弱数）s in terms of the total ＂quasi－spin＂quantum number S ，（think about it：why defined in this way？）

$$
S=(\Omega-s) / 2
$$

where the seniority quantum number s is $(s \leq \Omega)$

$$
s=\left\{\begin{array}{lr}
0,2,4, \cdots, & N=\text { even } \\
1,3,5, \cdots, & N=\text { odd }
\end{array}\right.
$$

The seniority model

Alternatively, one uses the seniority quantum number $s=\Omega-2 S$

$$
E(s, N)=-\frac{G}{4}\left[s^{2}-2 s(\Omega+1)+2 N(\Omega+1)-N^{2}\right]
$$

Note: $E(s=0, N=2)=-G \Omega$.
$\square s$ counts number of unpaired nucleons.

- ground state has minimal seniority $s=0$ (or maximal quasi spin $S=\Omega / 2$)
- for fixed N, excitations depend only on seniority quantum number
$\square E(N, s=2)-E(N, s=0)=G \Omega$, independent on N.

The BCS theory

The BCS wave function

- The wave function of an even-even nucleus is represented as

$$
|\mathrm{BCS}\rangle=\prod_{k>0}\left(u_{k}+v_{k} a_{k}^{+} a_{\bar{k}}^{+}\right)|0\rangle
$$

where u_{k} and v_{k} represent variational parameters.

- The product runs only over half the configuration space, as indicated by $k>0$. For each state $k>0$ there exists a "conjugate" state $\bar{k}<0$ and the states $\{k, \bar{k}\}$ generate the whole single-particle space. In a spherical basis ($m>0$),

$$
\begin{aligned}
& \left.|k\rangle=|n| j m\rangle_{C S}=|n| j m\right\rangle_{B C S}, \\
& |\bar{k}\rangle=|-k\rangle=\hat{T}|k\rangle=(-1)^{j-m}|n l j-m\rangle_{C S}=|n l j-m\rangle_{B C S}
\end{aligned}
$$

- The v_{k}^{2} and u_{k}^{2} represent the probability that a certain pair state (k, \bar{k}) is or is not occupied, which has to be determined in such a way that the corresponding energy has a minimum (variational principle).

The BCS wave function

- The norm of the BCS wave function is given by

$$
\langle\mathrm{BCS} \mid \mathrm{BCS}\rangle=\langle 0| \prod_{k>0}^{\infty}\left(u_{k}+v_{k} \hat{a}_{-k} \hat{a}_{k}\right) \prod_{k^{\prime}>0}^{\infty}\left(u_{k^{\prime}}+v_{k^{\prime}} \hat{a}_{k^{\prime}}^{\dagger} \hat{a}_{-k^{\prime}}^{\dagger}\right)|0\rangle
$$

The terms in parentheses all commute for different indices, so only the product of two such terms with the same index needs to be considered:

$$
\begin{aligned}
& \left(u_{k}+v_{k} \hat{a}_{-k} \hat{a}_{k}\right)\left(u_{k}+v_{k} \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger}\right) \\
& \quad=u_{k}^{2}+u_{k} v_{k}\left(\hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger}+\hat{a}_{-k} \hat{a}_{k}\right)+v_{k}^{2} \hat{a}_{-k} \hat{a}_{k} \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger}
\end{aligned}
$$

The norm is

$$
\langle\mathrm{BCS} \mid \mathrm{BCS}\rangle=\prod_{k>0}^{\infty}\left(u_{k}^{2}+v_{k}^{2}\right)
$$

and for normalization we must require

$$
u_{k}^{2}+v_{k}^{2}=1
$$

The BCS wave function

- The BCS wave function can be written as

$$
\begin{aligned}
|\mathrm{BCS}\rangle & \propto|0\rangle+\sum_{k>0} \frac{v_{k}}{u_{k}} a_{k}^{+} a_{\bar{k}}^{+}|0\rangle+\frac{1}{2} \sum_{k k^{\prime}>0} \frac{v_{k} v_{k^{\prime}}}{u_{k} u_{k^{\prime}}} a_{k}^{+} a_{\bar{k}}^{+} a_{k^{\prime}}^{+} a_{\bar{k}^{\prime}}^{+}|0\rangle+\cdots \\
& \propto|0\rangle+A^{\dagger}|0\rangle+\frac{1}{2}\left(A^{\dagger}\right)^{2}|0\rangle+\cdots \\
& \propto \exp \left(A^{\dagger}\right)|0\rangle
\end{aligned}
$$

where the generalized pairing operator is defined as

$$
A^{\dagger} \equiv \sum_{k>0} \frac{v_{k}}{u_{k}} a_{k}^{+} a_{k}^{+}
$$

- In solid state physics, where $N \simeq 10^{23}$, the violation of particle number has no influence on any physical quantity.
- In nuclei, however, the violation of the invariance corresponding to the particle number in many cases gives rise to serious errors.

The BCS equation

■ We assume that a many-body system is described by the Hamiltonian

$$
\begin{aligned}
H & =\sum_{k_{1} k_{2} \gtrless 0} t_{k_{1} k_{2}} a_{k_{1}}^{+} a_{k_{2}}+\frac{1}{4} \sum_{\substack{k_{1} k_{2} k_{3} k_{4} \\
\gtrless 0}} \bar{v}_{k_{1} k_{2} k_{3} k_{4}} a_{k_{1}}^{+} a_{k_{2}}^{+} a_{k_{4}} a_{k_{3}} \\
& =\sum_{k \gtrless 0} \varepsilon_{k}^{0} a_{k}^{+} a_{k}-G \sum_{k k^{\prime}>0} \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k^{\prime}} \hat{a}_{k^{\prime}}, \quad G>0
\end{aligned}
$$

- A Lagrange multiplier (subsidiary condition)

$$
\langle\mathrm{BCS}| \hat{N}|\mathrm{BCS}\rangle=N
$$

where \hat{N} is the particle-number operator

$$
\hat{N}=\sum_{k \gtrless 0} a_{k}^{\dagger} a_{k}=\sum_{k>0}\left(a_{k}^{\dagger} a_{k}+a_{-k}^{\dagger} a_{-k}\right)
$$

It can be shown that

$$
\langle\mathrm{BCS}| \hat{N}|\mathrm{BCS}\rangle=2 \sum_{k>0} v_{k}^{2} .
$$

The BCS equation

■ The expectation value of the pure single-particle part

$$
\langle\mathrm{BCS}| \sum_{k \gtrless 0} \varepsilon_{k}^{0} a_{k}^{+} a_{k}|\mathrm{BCS}\rangle=2 \sum_{k>0} \varepsilon_{k}^{0} v_{k}^{2}
$$

- The expectation value of the residual interaction term

$$
\begin{aligned}
& \langle\mathrm{BCS}|-G \sum_{k k^{\prime}>0} \hat{a}_{k}^{\dagger} \hat{\mathrm{a}}_{-k}^{\dagger} \hat{\mathrm{a}}_{-k^{\prime}} \hat{\mathrm{a}}_{k^{\prime}}|\mathrm{BCS}\rangle \\
& =-G \sum_{\substack{k k^{\prime}>0 \\
k \neq k^{\prime}}} u_{k} v_{k} u_{k^{\prime}} v_{k^{\prime}}-G \sum_{k>0} v_{k}^{2} \\
& =-G\left(\sum_{k>0} u_{k} v_{k}\right)^{2}-G \sum_{k>0} v_{k}^{4}
\end{aligned}
$$

■ The expectation value of the total Hamiltonian becomes

$$
\langle\mathrm{BCS}| \hat{H}-\lambda \hat{N}|\mathrm{BCS}\rangle=2 \sum_{k>0}\left(\varepsilon_{k}^{0}-\lambda\right) v_{k}^{2}-G\left(\sum_{k>0} u_{k} v_{k}\right)^{2}-G \sum_{k>0} v_{k}^{4}
$$

The BCS equation

Homework: please derive the following relations:

$$
\begin{aligned}
\langle\mathrm{BCS}| \hat{a}_{k}^{\dagger} \hat{a}_{k}|\mathrm{BCS}\rangle & =v_{k}^{2} \\
\langle\mathrm{BCS}| \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k^{\prime}} \hat{a}_{k^{\prime}}|\mathrm{BCS}\rangle & = \begin{cases}u_{k} v_{k} u_{k^{\prime}} v_{k^{\prime}} & \text { for } k \neq k^{\prime} \\
v_{k}^{2} & \text { for } k=k^{\prime}\end{cases}
\end{aligned}
$$

The BCS equation

- The variational principle:

$$
\frac{\partial}{\partial v_{k}}\langle\mathrm{BCS}| \sum_{k}\left(\varepsilon_{k}^{0}-\lambda\right) \hat{a}_{k}^{\dagger} \hat{a}_{k}-G \sum_{k k^{\prime}>0} \hat{a}_{k}^{\dagger} \hat{a}_{-k}^{\dagger} \hat{a}_{-k^{\prime}} \hat{a}_{k^{\prime}}|\mathrm{BCS}\rangle=0
$$

The u_{k} depend on the v_{k} via the normalization $u_{k}^{2}+v_{k}^{2}=1$, which yields

$$
u_{k} \mathrm{~d} u_{k}+v_{k} \mathrm{~d} v_{k}=0
$$

or

$$
\frac{\partial}{\partial v_{k}}=\left.\frac{\partial}{\partial v_{k}}\right|_{u_{k}}-\left.\frac{v_{k}}{u_{k}} \frac{\partial}{\partial u_{k}}\right|_{v_{k}}
$$

The BCS equation

- The variational principle:

$$
\begin{gathered}
4\left(\varepsilon_{k}^{0}-\lambda\right) v_{k}-2 G\left(\sum_{k^{\prime}>0} u_{k^{\prime}} v_{k^{\prime}}\right) u_{k}-4 G v_{k}^{3} \\
-\frac{v_{k}}{u_{k}}\left[-2 G\left(\sum_{k^{\prime}>0} u_{k^{\prime}} v_{k^{\prime}}\right)\right]=0
\end{gathered}
$$

All the equations for the different values of k are coupled through the term

$$
\Delta=G \sum_{k^{\prime}>0} u_{k^{\prime}} v_{k^{\prime}}
$$

We proceed by assuming for the moment that Δ is known, deriving an explicit form for v_{k} and u_{k}, and then using the definition of Δ as a supplementary condition. If we abbreviate to

$$
\varepsilon_{k}=\varepsilon_{k}^{0}-\lambda-G v_{k}^{2}
$$

reduces to

$$
2 \varepsilon_{k} v_{k} u_{k}+\Delta\left(v_{k}^{2}-u_{k}^{2}\right)=0
$$

Squaring this equation allows us to replace u_{k}^{2} by v_{k}^{2}, one finds

$$
\mathrm{v}_{k}^{2}=\frac{1}{2}\left(1-\frac{\varepsilon_{k}}{\sqrt{\varepsilon_{k}^{2}+\Delta^{2}}}\right), \quad \mathrm{u}_{k}^{2}=\frac{1}{2}\left(1+\frac{\varepsilon_{k}}{\sqrt{\varepsilon_{k}^{2}+\Delta^{2}}}\right)
$$

The BCS energy gap equation

■ Substituting the u_{k}, v_{k}, one finds the energy gap equation:

$$
\Delta=G \sum_{k>0} u_{k} v_{k}=\frac{G}{2} \sum_{k>0} \frac{\Delta}{\sqrt{\varepsilon_{k}^{2}+\Delta^{2}}}, \quad \varepsilon_{k}=\left(\varepsilon_{k}^{0}-\lambda\right)-G v_{k}^{2}
$$

It can be solved iteratively using the known values of G and the single-particle energies ε_{k}^{0}. The other parameter λ then follows from simultaneously fulfilling the condition for the total particle number,

$$
\sum_{k>0} 2 v_{k}^{2}=N
$$

To do this the term $-G v_{k}^{2}$ in the definition of the ε_{k} has to be neglected. This is usually done with the argument that it corresponds only to a renormalization of the single-particle energies.

The BCS energy gap equation

■ The levels with $\varepsilon_{k} \approx 0$, i.e., those near the Fermi energy, will contribute most in the gap equation.

- Since proton and neutron Fermi energies are quite different, the gap equation is written separately for the proton and neutron energy-level schemes and there will also be separate strengths G_{p} and G_{n}, gap parameters

$$
G_{\mathrm{p}} \approx 17 \mathrm{MeV} / A \quad, \quad G_{\mathrm{n}} \approx 25 \mathrm{MeV} / A
$$

- In many studies the pairing gaps are taken as the prescribed parameter, which simplifies the calculations considerably. It is also still a controversial question, whether for a deformed nucleus the pairing strength or gap depend on deformation.

The pairing gap and odd-even mass difference

The pairing gap can be approximately determined by the odd-even mass difference:

$$
\begin{aligned}
\Delta_{q}^{(3)}\left(N_{0}\right) & =\frac{(-1)^{N_{0}}}{2}\left[E\left(N_{0}+1\right)-2 E\left(N_{0}\right)+E\left(N_{0}-1\right)\right] \\
& =\frac{(-1)^{N_{0}}}{2}\left[\left.\frac{\partial^{2} E_{0}}{\partial N^{2}}\right|_{N_{0}}+\left.\frac{1}{12} \frac{\partial^{4} E_{0}}{\partial N^{4}}\right|_{N_{0}}+\cdots+D\left(N_{0}+1\right)-2 D\left(N_{0}\right)+D\left(N_{0}-1\right)\right] \\
& \approx \frac{(-1)^{N_{0}}}{2}\left[D\left(N_{0}+1\right)-2 D\left(N_{0}\right)+D\left(N_{0}-1\right)\right]
\end{aligned}
$$

where D is defined as
$D=\left\{\begin{array}{l}0, \text { even proton and neutron number } \\ \Delta_{\mathrm{n}}, \text { odd neutron number, } \\ \Delta_{\mathrm{p}}, \text { odd proton number. }\end{array}\right.$

Particle Number
M. Bender et al., EPJA8, 59 (2000)

The pairing gap and odd-even mass difference

M. Bender et al., Pairing gaps from nuclear mean-field models, EPJA8, 59 (2000)

