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tion: evidence of pairing correlation
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Figure 6.1. Excitation spectra of the 5Sn isotopes.
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m even-even nuclei are bound more
tightly than odd nuclei.

= in even-even nuclei there is an
energy gap of 1-2 MeV between
the ground state and the lowest
single-particle excitation.
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Introduction: evidence of pairing correlation
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Fig. 17. Moments of inertia of even-even nuclei in region I. The figure exhibits by the crossed

line the rigid moment of inertia corresponding to Ry = 1.2 AV3 f, The empirical values given

as filled circles do not include a y correction for the rotation-vibration interaction. The dashed

and dot-and-dash lines refer to calculations corresponding to the choice of I’I/ and 1“ B

with an assumed single-particle level spectrum €, as given according to the alternative cases
A and B of table I.

= To explain the moment of inertia we need to take into the account nuclear pairing
interaction.
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Introduction: occupation probability
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The wave function of two-particle system

The normalized angular-momentum (J) coupled wave function of two-particle system:
|ab; JM) = Na(J) [cc}]  10)

= Nan(J) Z C]i%a/bmﬁ cl CE; 10)

Me m@
1+ ‘sarb(*1 )J
Nap(J) = Y—22 7
ab( ) 1+ 5ab
where N (J) is a normalization factor. The label a stands for nalaja. The C/M is

JaMa Mg
the Clebsch-Gordon coefficient.
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The wave function of two-particle system

m The Clebsch-Gordan (CG) coefficients:
Let j; and j» be two angular momenta with projections my and m, on the
quantization axis. A CG coefficients represents the probability amplitude that j
and j» are coupled into a resultant angular momentum j with projection m.
In accordance with the vector addition rules j; + j» = j, the CG coefficient
vanishes unless the triangular conditions (triangular inequalities) are fulfilled, i.e.,
=l <j<ji+ik
and the requirement
m+me=m

is satisfied. The CG coefficients satisfy the following conditions:

J1, j2, j are integer or half-integer non-negative numbers;

my, my, m are integer or half-integer (positive or negative) numbers;

[mi| < jiylme| < o, [m| < j

J1 + my, o+ mp, j+ m,ji + j» + j are integer non-negative numbers.

SR @ 1) = (2 1) (24 1),
The absolute value of a CG coefficient is given by Q = («, 3,7)

L " da | assing | " 1Dl () Dl 1y () D)

Jimijamy 8

The phase of the CG coefficients may be chosen in different ways. If the
Condon-Shortley convention is chosen, the CG coefficients are real.
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The wave function of two-particle system

m The Clebsch-Gordan (CG) coefficients:
The CG coefficients are elements of the unitary matrix which performs direct and
inverse transformations between state vectors |j; myjom.) and | jojm)
oy = Gtz | jujaim) = (rjojm | jymijamy)

The unitarity relation is

J'm' .
Zmﬂﬂz /1m112m2 Jrmyjpmy = 0j Oy

i C" jm =8 mt S
J(m) = jymajpmg ~jymi jom), mymy =mam;,

The direct product of two irreducible tensors ¥, m, and R, ,, may be decomposed
into irreducible tensors. The coefficients of this decomposition are just the
Clebsch-Gordan coefficients:

m f .
‘3'-1”71%2’"2 ch1m1/2m2 h ®§R/z}jm

The inverse relation is

. ) _ jm ) .
{5 ow, }jm = Z Cj1 mjpmy it my T -

mymz
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The wave function of two-particle system

m The Wigner 3jm symbol and Clebsch-Gordan (CG) coefficients:
The Wigner 3jm symbols are usually used instead of the CG coefficients. These
symbols possess simpler symmetry properties. The 3jm symbols are related to
the CG coefficient by

h kB — (=)t s+ 1 chms
m M, m 2fg 1 STk

The inverse relation is

i . _ ho ok I3
it BT )

m4 me  —mg

m Symmetries in the CG coefficients:

2c+1 o |2C+1
— b— _ b— 3 « b3
Cacgbﬁ ( 1)a+ chgaa - (_1)8 2b+ 1 Caac y ( 1)3 2b + 1 cha—a

(=1)2+8 20+1 = ()bt 2c+1 cio
2a+ 1 Cobp = 231 b=Aoy

a+b—cCc—v
1) Caabﬂ

Cy
Caa bﬁ
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The wave function of two-particle system

m Symmetries in the 3jm symbols:
Permutations of columns

a b _ b ¢ a _ c a b :(71)a+b+c a ¢ b
a B B v « vy a B

a v B

— (_q)atb+c b a ¢ — (_1)atbtc c b a
(=1 (=1
B a v 7 B«

Change of signs of momentum projections

a b c :(71)a+b+c a b c
a B v —a -8 —v
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The wave function of two-particle system

= The two-body interaction in J-coupled form:
Making use of the following relation,

laB) = clchlo) = % Cllmejoms Wab()] ™" |ab; JM)

one can rewrite the two-body interaction as follows

V=- Z (B V|yé)eh C,BC§C~Y
aﬁwé

= - Z Nab()Nea(S)] ' CM cIM . (ab; JM|V|cd; JM)elclese,

‘jaMajpmg ~jeM~y jgMs
aﬁvé

Converting the annihilation operators into spherical tensors yields
Cs5Cy = (—1)d=Msg_5(—A)Yo=MrE_, = (—1)etla—(mytme)+ig_ & s
By summing over the m,, 3 -5, we obtain
V=13 e Wan(D)Nog (U] (ab; M| V|cd; J' M)

[c;cb] (—1) M +1 [EcCaly
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The wave function of two-particle system

Considering the fact that the two-body interaction V is a scalar with rank A = 0, thus,
(ab; IM|V|cd; J'M") = 6,y e (@b; J| V| cd; J)
The resulting expression for V is

=—- Z >~ Wan()Neo ()] " (@b J| Vied; o) S (= 1) [choh]  [8cBal,

J abcd M

= 2 S WaolIWeol)] " V2T T(@bi | Vied: ) [[ehef] [ectal,]

J abcd

where the following relation is used

)
C‘JMJ M= ﬁ
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The wave function of two-particle system

The unnormalized two-body matrix element is defined as

<ab; J‘ V|Cd; J>unnorm = Z Uamajbmﬁ |JM> <ij’dem5 |JM> VO‘BW‘S'
mamg
m~mg

The normalized two-body matrix element is defined as

(ab; J| VIcd: J) = Nap(DWNag(d) S~ (alMsMs | IM) Yo jams | IM) Va5

momg
mymg

= ab(J)NCd(J) . <ab; J‘ V‘Cd; J>unnorm~
From J-coupled two-body matrix element to the m-scheme one

Vagrs = D Wab(DNea(D)] ™ (jaMafoms|IM) (om jgms|JM) (ab; J|V|cd; J)
JM

= Z(jamajbmﬂ‘JM> <jcm’dem5|JM> ° <ab; J‘ V‘Cd; J>unnorrn-
JM
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The two-particle system with a pure pairing force

Considering the two-particle system with T = 1 (nn or pp) in a single j-shell (64 = 1,
only even J nonzero). The normalization factor becomes,

1
Nab(J) = ﬁéJ,even .

The two-body interaction is simplified as (a, b, ¢, d are restricted to the same quantum
number nlj)

V=3 303 Wasl Do) V2T T Tabi ol Vied: ) [[ehef] 16etal,]

J abed
. Z V2T 1 VIG ) [[efef]  [581,)]
If only the J = 0 component is considered, one finds

1. . o
Vimo = =5 i 0IVIEO) [of ] (8],

00

i olvlii c00 o of 00
= — 5 (j: 0| V|jj; 0) m/m/ ijClm/ Z ij”jm”/ C._1 Cj /11
mm’ —

cf cT ¢ /C

m m2(1)jm ji—m’
NeTak T

= LoV 0 Y1y
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The two-particle system with a pure pairing force

In terms of the spherical tensor operators
E:;n = (—1)]+mcj1;m7 &/‘7/77 = (—1)/_mC/'m

one finds
Vizo = 70/ 0| VIj; 0) 5~ 2/+1 Zc;,,c}mcjm, Coy

=-G > el e e

Jm=jm lm Jm
m,m’ >0

where we have defined the constant G as

- 0
G 2+1<//0\V|// )

which is the so-called pairing strength and has to be positive so that the pairing interac-
tion V,_g is attractive.

SPA/SYSU Nuclear Theory



Pairing in the degenerate single-j model
[ J

Pairing in the degenerate single-j model

SPA/SYSU Nuclear Theory



Pairing in the degenerate single-j model
[ Jele]e]

Two particles in the degenerate single-j model

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

¥ [gm =£1/2 >
gm >

2j +1

69— |jm==j>

Figure: The single-j shell with the single-particle energy ; = 0.

m Hamiltonian: bt
H=-G Z C/'mcjmcjm’ ij’ :

m,m’ >0

m Expanding the wave function of the two-particle in terms of the two-particle basis
constructed as

W(1,2)) = > eml®m(1,2)),  |®m(1,2)) = AL |0) = ¢} &l [0),
m>0

where m=1/2,3/2,- - ,j with the dimension Q = j + 1/2.
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Two particles in the degenerate single-j model

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

; ljm = +1/2 >
jm >

27 +1
A [jm==%j>

Figure: The single-j shell with the single-particle energy «; = 0.

m The eigenvalue problem:
HC = EC

with the matrix element is determined by
Hony = (®m(1,2)|H|®n(1,2))
=(@n(1,2)| =G Y ch, & Bm,Cim,|®1(1,2))

mymy>0

_ af .
=-G Z 0|C/mC]m imy C]m1 Clmz Gjmy €, /m’ /m’ 0) =
my,my>0
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Two particles in the degenerate single-j model

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

i l[gm =+1/2 >
jm >

2j +1

—bo— |jm=+j>

Figure: The single-j shell with the single-particle energy ; = 0.

m The Hamiltonian matrix is a Q x Q matrix,

11 1
11 1
H=-G _
11 1

The characteristic determinant is
(-GQ—E)-E)*"=0
from which one finds the eigenvalues
E; =-QG, E=0fori=23,.---,Q

SPA/SYSU Nuclear Theory
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Two particles in the degenerate single-j model

The two-particle system in single-j

Considering two particles in a single j-shell with only a pairing interaction:

|im = £1/2 >
ljm > .
27+1

tde— |jm=1%j>

Figure: The single-j shell with the single-particle energy ; = 0.

m The wave function of the first (lowest-energy) state

In occupation number representation

1)i+m 1 [

)= g AR = U5 el 0=

m>0
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N particles in the degenerate single-j model

The seniority model

Considering N fermions in a single j-shell:

jj: i = >

Figure: The single-j shell with the single-particle energy ; = 0.

l[gm =+1/2 >

] >
lgm 2j +1

m Hamiltonian:

We define a quasi-spin operator
A - 2 A\ T
S =3 8"=3 clehands = (&)
m>0 m>0
and

S =cheh, 8™ =Enom, SY™ = - (chom + Eibm — 1)

N =

where &hém = ¢t ,c—m.
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N particles in the degenerate single-j model

The seniority model

Considering N fermions in a single j-shell:

jj: v = >

Figure: The single-j shell with the single-particle energy ; = 0.

ljm = +1/2 >

j >
ljm 2j+1

Commutation relations

SPA/SYSU Nuclear Theory
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N particles in the degenerate single-j model

The seniority model

m Define total quasi-spin operator: S =2, 8™
H=-G8,5_
= -G [(5+i8))(5 ~ i8))]
=—G($-sf+5)

where we used the relation [Sx, 5] = i&, and

1 1
So=3 ngo (c;,cm+cimc_mf 1) =5 (N-9),

with Q =j+1/2.
m The energy:

E:fG[S(S+1)f%(N—Q)2+%(Nfﬂ)].

SPA/SYSU Nuclear Theory
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N particles in the degenerate single-j model

The seniority model

m Introducing the seniority quantum number (3£55%%) s in terms of the total
“quasi-spin" quantum number S, (think about it: why defined in this way?)

S=(Q-19)/2
where the seniority quantum number s is (s < Q)

0,2,4,---, N= even
S =
1,3,5,---, N =odd

SPA/SYSU Nuclear Theory
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N particles in the degenerate single-j model

The seniority model

Alternatively, one uses the seniority quantum number s = Q — 2S

E(s,N) = 7% [32*23(9+1)+2N(Q+1)—N2]

Configuration: (hy;)", G=0.25 MeV

-0.5 > v

Energy [MeV]

- s=4

0 2 4 5 8 10 2
Particle number N
Note: E(s =0,N =2) = —GQ.
= s counts number of unpaired nucleons.
m ground state has minimal seniority s = 0 (or maximal quasi spin S = Q/2)
m for fixed N, excitations depend only on seniority quantum number
m E(N,s =2)— E(N,s =0) = GQ, independent on N.
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The BCS theory
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The BCS theory
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The BCS wave function

m The wave function of an even-even nucleus is represented as

BCs) =[] (uk +waja ) |0)
k>0
where u, and v, represent variational parameters.

m The product runs only over half the configuration space, as indicated by k > 0.
For each state k > 0 there exists a "conjugate” state k < 0 and the states {k, k}
generate the whole single-particle space. In a spherical basis (m > 0),

|k) = |nljm)cs = |n|jm)gcs,
k) = | — k) = T|k) = (=1 ~"|nlj — m)cs= |nlj — m)gcs,

m The VE and u,% represent the probability that a certain pair state (k, k) is or is not
occupied, which has to be determined in such a way that the corresponding
energy has a minimum (variational principle).

SPA/SYSU Nuclear Theory
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The BCS wave function

m The norm of the BCS wave function is given by

(BCS | BCS) = <0 IT (u+ via @) T (ue + w8ty o>
k>0 k>0

The terms in parentheses all commute for different indices, so only the product of
two such terms with the same index needs to be considered:

(uk + vka_kax) (Uk + Vké;zétk)

= &+ uev (8fa, + & a) + B alal,

The norm is
oo
(BCs | BCS) = [ | (uﬁ + vk2)
k>0
and for normalization we must require
BHvi=1.

SPA/SYSU Nuclear Theory
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The BCS wave function

m The BCS wave function can be written as

Vi Vier
BCS 0) + a*a*O + = afalal, .az+ 0
| ) o< |0) k§ e |0) 22 Uty 2 % B |0) +
>0 Kk! >0

1
oc [0) 4 AT|0) + E(AT)2\0> +
o exp(A")|0),
where the generalized pairing operator is defined as
t =S Yk g gt
At =%" 0, % %
k>0

- In solid state physics, where N ~ 1023, the violation of particle number has no
influence on any physical quantity.

- In nuclei, however, the violation of the invariance corresponding to the particle
number in many cases gives rise to serious errors.

SPA/SYSU Nuclear Theory
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The BCS equation

m We assume that a many-body system is described by the Hamiltonian

1
_ + - + ot
H= Z i oo ay, i, + 4 Z Vs kaksky Qi 8ie, Bky Gk
0

ko= ki kg kg
0

N0t sfat 3 3

= cpafa -G > aa a8, G>0

k=0 kk! >0
m A Lagrange multiplier (subsidiary condition)
(BCS ‘N) BCS) = N
where N is the particle-number operator

N=>ala=>" (a,tak + afkak>

k=0 k>0

It can be shown that

‘ (BCS|N|BCS) = 23, V2. ‘

SPA/SYSU Nuclear Theory
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The BCS equation

m The expectation value of the pure single-particle part

(BCS| > edafaxBCS) =2 ).
k=0 k>0

m The expectation value of the residual interaction term

(BCS| -G > alal & a0(BCS)

kk’ >0
=-G Z Uy Vi Ugr Vir — GZ VE
kk! >0 k>0
kK
2
=-G|> ww| -G v
k>0 k>0

m The expectation value of the total Hamiltonian becomes

2
(BCS|H — AN|BCS) —22( )ka (Zukvk) -G v}

k>0 k>0 k>0

SPA/SYSU Nuclear Theory
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The BCS equation

Homework: please derive the following relations:

<BCS afa BCS> =2
Uk VU Vi for k # k'
<Bcs‘élaiké,k,ak/ BCS>: HEk Tk T 7
v2 for k = K’
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The BCS equation

m The variational principle:

92 <Bcs S (h-r)ala-c > el a e BCS> =0
vk k kk! >0

The u depend on the v via the normalization u2 + v2 = 1, which yields
Uk dug + v dve =0

or
0 0

8vk:87vk

Vi o

Uk Uy 8uk

Vk
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The BCS equation

m The variational principle:

4(9 = X) vik = 2G (X pr w0 U Vier) Uk — 4GV
7[‘% [72G (2k’>0 Uy Vk’)] =0
All the equations for the different values of k are coupled through the term
A=G Z Uyr Vier
k’>0

We proceed by assuming for the moment that A is known, deriving an explicit
form for v, and uy, and then using the definition of A as a supplementary
condition. If we abbreviate to

ek =€9 — A — GV}

reduces to
D ViUk + A <v2 - uf) =0

Squaring this equation allows us to replace u,% by v,f, one finds

v2=1(1_- €k w=111+ €k
k=2 Jewaz [ | KT 2 \Je2+n2
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The BCS energy gap equation

m Substituting the g, vk, one finds the energy gap equation:

ek = (€9 —N) — GV2

G A
A=G UV = — —_—
Ig) o 2;<Z>(u/si+A2

It can be solved iteratively using the known values of G and the single-particle
energies 52. The other parameter A then follows from simultaneously fulfilling the
condition for the total particle number,

D2 =N

k>0

To do this the term —Gv2 in the definition of the ¢ has to be neglected. This is
usually done with the argument that it corresponds only to a renormalization of the
single-particle energies.
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The BCS energy gap equation

m The levels with ¢, = 0, i.e., those near the Fermi energy,
will contribute most in the gap equation.

= Since proton and neutron Fermi energies are quite
different, the gap equation is written separately for the
proton and neutron energy-level schemes and there will
also be separate strengths G, and Gn, gap parameters

Gp ~17MeV/A , Gn =~ 25MeV/A

= In many studies the pairing gaps are taken as the
prescribed parameter, which simplifies the calculations
considerably. It is also still a controversial question,
whether for a deformed nucleus the pairing strength or
“i00 gap depend on deformation.

Ap (MeV)
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The pairing gap and odd-even mass difference

The pairing gap can be approximately determined by the odd-even mass difference:

®3) ()M [
Ay (No) = 5 E(Ng+1) —2E(No) + E(No — 1)
_(—1)M [ &2 19K B B
S 5| e D(No+1) = 2D (No) + D(No — 1)

0 0

2

(1% [ ]
~—L—|D(Ng+1)—2D(No) +D(Np — 1) |.

where D is defined as

0, even proton and neutron number

D= <{ A,, odd neutron number,

)+Ey(N-1)]/2, N odd
+Ey(N-1)]/2,N even

Ay, odd proton number.

Particle Number

M. Bender et al., EPJA8, 59 (2000)
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The pairing gap and odd-even mass difference

BCS [DF]

Gap [MeV]

0.5
Sn N=82
0.0 = . ! t - t L . . 0.0
50 60 70 80 90 100 110 50 60 70
Neutron Number N Proton Number Z

M. Bender et al., Pairing gaps from nuclear mean-field models, EPJA8, 59 (2000)
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