Ab initio calculation of deformed nuclei with in-medium generator coordinate method

Jiangming Yao

FRIB/NSCL, Michigan State University, East Lansing, Michigan 48824, USA

The 3rd Conference on "Microscopic Approaches to Nuclear Structure and Reactions", LLNL, November 12-15, 2019

Nuclear shapes in modeling low-energy nuclear physics

- Deformation/collective correlations are relevant for understanding many phenomena of nuclear structure and reactions.
 - Evolution of shell structure and collectivity
 - Shape coexistence
 - Nuclear fission
 - (Double) beta decay
- Challenge to capture deformation effect for traditional shell models.
 - multi-particle-multi-hole excitation configurations

Multi-reference energy density functionals

provides a successful microscopic tool for the low-energy spectroscopy of atomic nuclei with somewhat arbitrary shapes (with some unsolved issues).

- introduce collective correlations by breaking (rotation) symmetries in the fields/densities.
- recover symmetries for spectroscopic analysis with projection techniques
- consider additional correlations by mixing configurations of different shapes
- applications to nuclear reactions (fission)
- Implemented into shell-model calculations: MCSM/PSM
- An alternative way to perform configuration-interaction calculation

Recent review: Sheikh, Dobaczewski, Ring, Robledo, Yannouleas, arXiv:1901.06992 [nucl-th]

Generator coordinate method (GCM) in a nutshell

The trial wave function of a GCM state

$$|\Phi^{JNZ\cdots}\rangle = \sum_{Q} F_{Q}^{JNZ} \hat{P}^{J} \hat{P}^{N} \hat{P}^{Z} \cdots |\Phi_{Q}\rangle$$

 $|\Phi_Q\rangle$ are a set of HFB wave functions from constraint calculations, Q is the so-called generator coordinate.

The mixing weight F_Q^{JNZ} is determined from the Hill-Wheeler-Griffin equation:

$$\sum_{Q'} \left[H^{JNZ}(Q,Q') - E^J N^{JNZ}(Q,Q') \right] F_{Q'}^{JNZ} = 0$$

Features (pros) of GCM

- The Hilbert space in which the *H* will be diagonalized is defined by the *Q*.
 Many-body correlations are controlled by the *Q*
- The Q is chosen as (collective) degrees of freedom relevant to the physics.
- Dimension of the space in GCM is generally much smaller than full CI calculations.

GCM calculations starting from a ...

- potential determined from lattice QCD/phenomenological parametrization or chiral EFT with parameters determined by the data of NN scattering or 2B/3B systems. too "hard" to be used for mean-field-based approaches
- potential softened with SRG evolution (decoupling matrix elements between low- and high-momentum states)

S. K. Bogner et al. (2010)

Phenomenological potentials

Potential from the chiral EFT

GCM calculations starting from a softened chiral interaction

- The EM1.8/2.0 (ħω = 16 MeV) chiral interaction Hebeler, Bogner, Furnstahl, Nogga, Schwenk (2011)
- The collective properties are reasonably described. However, the entire spectrum is systematically shifted up to high energy.
- Some correlations missing

Missing correlations from ...

credit: H. Hergert

 coupling of the reference state |Φ⟩ with other states by the H.

A unitary transformation can be introduced to decouple the reference state from other states.

For a given Hamiltonian H_0 with the bare nuclear interaction, the exact ground-state wave function $|\Psi_0\rangle$ is determined by

$$H_0|\Psi_0
angle=E_{
m g.s.}|\Psi_0
angle$$

Let's assume this wave function is connected to the reference (or GCM) state $|\Phi\rangle$ with a unitary transformation

$$|\Psi_0\rangle=e^{-\Omega}|\Phi\rangle, \quad \Omega=-\Omega^{\dagger}=\Omega^{(1)}+\Omega^{(2)}+\cdots$$

It indicates that the $|\Phi\rangle$ is the ground-state of the effective Hamiltonian $H_{\text{eff.}} = e^{\Omega}H_0e^{-\Omega}$,

$$H_{\rm eff.} |\Phi\rangle = E_{\rm g.s.} |\Phi\rangle.$$

- The mean-field based approaches (GCM) can still arrive at the correct solutions, provided that the unitary transformation e^{Ω} is known.
- The unitary transformation decouples the reference state from all other states.
- Many-body correlations are encoded into the effective Hamiltonian.
- The reference state |Φ⟩ can in principle be chosen as any state (not orthogonal to the exact ground state).

A set of continuous unitary transformations onto the Hamiltonian

 $H(s)=U(s)H_0U^\dagger(s)$

Flow equation for the Hamiltonian

$$\frac{dH(s)}{ds} = [\eta(s), H(s)]$$

where the $\eta(s)$ is the so-called generator chosen to decouple a given reference state from its excitations.

 Computation complexity scales polynomially with nuclear size

Tsukiyama, Bogner, and Schwenk (2011); Hergert, Bogner, Morris, Schwenk, Tsukiyama (2016)

Not necessary to construct the H matrix elements in many-body basis !

IMSRG for closed-shell nuclei

- The ref. state |Φ⟩ is chosen as a single-determinant (HF) state.
- Good agreement with other ab-initio calculations.

Tsukiyama, Bogner, Schwenk (2011)

Caveats

- Higher-body operators are induced in the flow.
- NO2B: truncation up to normal-ordered two-body terms

H. Hergert et al (2016)

IMSRG for open-shell nuclei

MR-IMSRG

- Strong pairing correlations
- NO2B approximation on top of single-reference state is not sufficient
- Extension to multi-reference framework

Hergert, Binder, Calci, Langhammer, Roth (2013)

Valence-space IMSRG

- Decoupling the interaction into a small valence space
- Full CI in the valence space

Bogner, Hergert, Holt, Schwenk, Binder, Calci, Langhammer, Roth (2014); Stroberg, Calci, Hergert, Holt, Bogner, Roth, Schwenk (2016)

MR-IMSRG: build correlations on top of already correlated state (e.g., from a method that describes static correlation well)

H. Hergert, S. Binder, A. Calci, J. Langhammer, and R. Roth (2013)

Extensions to excited states of open-shell nuclei: VS-IMSRG

 The valence-space IMSRG and EOM-IMSRG calculations using the effective interaction derived from a chiral NN+3N interaction with the IMSRG(2).

N. M. Parzuchowski, S. R. Stroberg, P. Navrátil, H. Hergert, and S. K. Bogner (2017)

- The E2 transition strengths from ground state to the first 2+ state are systematically underestimated, indicating the truncation up to NO2B terms starting from a spherical HF/ ensemble reference state is difficult to capture collective correlations.
 - The E2 transition operator might not be decoupled into the small model space in the same manner as that of the interaction.
 - NO2B approximation starting from spherical HF state is not able to capture sufficient collective correlations.

Building many-body correlations into interaction with IMSRG

JMY, J. Engel, L.J. Wang, C.F. Jiao, H. Hergert (2018)

- ☞ benchmarked against the shell-model calculations for the low-lying energy spectra of 48Ca, 48Ti.
- ✓ The IMSRG overall improves the agreement with the shell-model results.

It encourages us to extend this approach by using interactions from chiral EFT.

IMSRG+GCM calculations starting from a softened chiral interac

starting from a SRG softened chiral interaction

https://physics.aps.org

Application: $0\nu\beta\beta$ from ⁴⁸Ca to ⁴⁸Ti

- PNVAP calculation with the IMSRG evolved chiral interaction.
- Extrapolation of the ground-state energy

JMY, B. Bally, J. Engel, R. Wirth, T.R. Rodríguez, H. Hergert, arXiv:1908.05424

$$\begin{split} M^{0\nu} &= \frac{4\pi R}{g_A^2} \int d^3 \vec{r}_1 \int d^3 \vec{r}_2 \int \frac{d^3 \vec{q}}{(2\pi)^3} \frac{e^{i \vec{q} \cdot (\vec{r}_1 - \vec{r}_2)}}{q [q + \vec{E} - (E_i + E_f)/2]} \\ &\times \langle 0_F^+ | e^{\Omega} \left[\mathcal{J}_{\mu}^{\dagger} (\vec{r}_1) \mathcal{J}^{\mu \dagger} (\vec{r}_2) \right] e^{-\Omega} | 0_I^+ \rangle \end{split}$$

$$M^{0\nu} = \int dr_{12} \ C^{0\nu}(r_{12})$$

- The quadrupole deformation in ⁴⁸Ti changes both the short and long-range behaviors
- The neutron-proton isoscalar pairing is mainly a short-range effect

$$\phi_{np} = \langle \Phi | P_0^{\dagger} | \Phi \rangle + \langle \Phi | P_0 | \Phi \rangle$$

with

$$\mathcal{P}^{\dagger}_{\mu}=rac{1}{\sqrt{2}}\sum_{\ell}\hat{\ell}[a^{\dagger}_{\ell}a^{\dagger}_{\ell}]^{L=0,J=1,T=0}_{0\mu0}$$

Application: $0\nu\beta\beta$ from ⁴⁸Ca to ⁴⁸Ti

The neutron-proton isoscalar pairing fluctuation quenches ~17% further, which might be canceled out partially by the isovector pairing fluctuation.

Take-away messages:

- The IMSRG+GCM (IMGCM) opens a door to modeling deformed nuclei with realistic nuclear forces (from chiral EFT). Many interesting phenomena of low-energy physics (shape transition, coexistence, clustering structure) can be explored within this framework.
- The shape evolutions along Z = 12 and N = 28 chains are studied. The IMGCM shows promising results in the description of the systematics in the low-lying states.
- The NME for the neutrinoless double beta decay from spherical ⁴⁸Ca → deformed ⁴⁸Ti is calculated with the IMGCM. Deformation shows a strong quenching effect on the NME.

What's next:

- From IMSRG(2) to IMSRG(3)
- Extension to heavier nuclear systems:

 $M^{0\nu}$, single- β decay of nuclei relevant for *r*-process nucleosynthesis, etc

a simple ansatz for the wave function for odd-odd nucleus

$$\left|^{42}\operatorname{Sc}; JNZ(\beta_{2}, \phi_{np})\right\rangle = \sum_{K, pn} f_{K}^{JNZ}(\beta_{2}) \hat{P}^{N} \hat{P}^{Z} \hat{P}_{MK}^{J} [\beta_{p}^{\dagger} \beta_{n}^{\dagger}] \right|^{42} \operatorname{Sc}; \operatorname{HFB}(\beta_{2}, \phi_{np}) \rangle \quad (1)$$

The GT transition strength (g_A is taken as 1)

$$B(GT^{-}:0^{+}_{1} \to 1^{+}_{m}) = \left| \langle 1^{+}_{m} || \hat{O}^{-}_{\rm GT} || 0^{+}_{1} \rangle \right|^{2}$$
(2)

Quadrupole deformation in ⁴⁸Ti reduces the B(GT⁺)

neutron-proton isoscalar pairing in ⁴⁸Ti reduces significantly the $B(GT^+ : {}^{48}Ti \rightarrow {}^{48}Sc).$

• Quadrupole deformation in ⁴⁸Sc is essential to reproduce the $B(GT^+)$

-62

■ *np* pairing in 48 Sc reduces slightly the $B(GT^+)$

E (1⁺_m) [MeV]

B(GT⁻)

(_____30 15) 16 20 20

10

-66

E (1⁺_m) [MeV]

GCM calculation for the NME of two-neutrino double-beta decay transition

$$M^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} || \sigma \tau^{-} || 1_{m}^{+} \rangle \langle 1_{m}^{+} || \sigma \tau^{-} || 0_{i}^{+} \rangle}{E(1_{m}^{+}) - [E(0_{i}^{+} + E(0_{f}^{+})]/2}$$
(3)

- The $M^{2\nu}$ is dominated by the transition through the first 1⁺ state in the intermediate nucleus (overestimated).
- The model space is still not sufficient (expected to decrease the NME).
- Interest to see the results with the IMSRG+GCM starting from a chiral interaction

Michigan State University	University of North Carolina at Chapel Hill
Scott BognerHeiko HergertRoland Wirth	Benjamin BallyJonanthan Engel
	Iowa State University
San Diego State University	Robert A. Basili
Changfeng Jiao	James P. Vary
Universidad Autónoma de Madrid	Southwest University
Tomás R. Rodríguez	Longjun Wang

Thank your for your attention!

J. M. Yao

Speeding up the convergence of the NCSM with IMSRG

MR-IMSRG+NCSM

- NCSM with N_{max} = 0 for the reference state
- MR-IMSRG evolution in a large model space
- Convergence of the NCSM with the evolved interaction is speeded up.

Gebrerufael, Vobig, Hergert, Roth (2017)

VS-IMSRG for excited states of sd-shell nuclei

Review: Stroberg, Bogner, Hergert, Holt (2019)

One-body density in natural basis

$$\begin{array}{lll} \rho_{ji}(s) & = & \langle 0^+_1 | e^{\Omega(s)} [c^{\dagger}_i \tilde{c}_j]^0 e^{-\Omega(s)} | 0^+_1 \rangle \\ & = & \langle 0^+_1 | [c^{\dagger}_i \tilde{c}_j]^0 | 0^+_1 \rangle + \langle 0^+_1 | [\Omega(s), [c^{\dagger}_i \tilde{c}_j]^0] | 0^+_1 \rangle + \cdots \end{array}$$

where the wave function $|0_1^+\rangle$ is from the GCM calculation with the $H(s) = e^{\Omega} H_0 e^{-\Omega}$.

