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Nuclear shapes in modeling low-energy nuclear physics

Deformation/collective
correlations are relevant for
understanding many
phenomena of nuclear
structure and reactions.
− Evolution of shell structure

and collectivity
− Shape coexistence
− Nuclear fission
− (Double) beta decay

Challenge to capture
deformation effect for
traditional shell models.
− multi-particle-multi-hole

excitation configurations
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Capture deformation/collective correlations explicitly

Multi-reference energy density functionals

provides a successful microscopic tool for the low-energy spectroscopy of atomic
nuclei with somewhat arbitrary shapes (with some unsolved issues).

introduce collective correlations by breaking (rotation) symmetries in the
fields/densities.

recover symmetries for spectroscopic analysis with projection techniques

consider additional correlations by mixing configurations of different shapes

− applications to nuclear reactions (fission)

− Implemented into shell-model calculations: MCSM/PSM

− An alternative way to perform configuration-interaction calculation

Recent review: Sheikh, Dobaczewski, Ring, Robledo, Yannouleas, arXiv:1901.06992 [nucl-th]
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Generator coordinate method (GCM) in a nutshell

The trial wave function of a GCM state

|ΦJNZ ···〉 =
∑

Q

F JNZ
Q P̂J P̂N P̂Z · · · |ΦQ〉

|ΦQ〉 are a set of HFB wave functions from
constraint calculations, Q is the so-called
generator coordinate.

The mixing weight F JNZ
Q is determined from the

Hill-Wheeler-Griffin equation:

∑
Q′

[
HJNZ (Q,Q′)− EJ NJNZ (Q,Q′)

]
F JNZ

Q′ = 0

Features (pros) of GCM

− The Hilbert space in which the H will be diagonalized is defined by the Q.
Many-body correlations are controlled by the Q

− The Q is chosen as (collective) degrees of freedom relevant to the physics.
− Dimension of the space in GCM is generally much smaller than full CI calculations.
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GCM calculations starting from a ...

potential determined from lattice
QCD/phenomenological parametrization or
chiral EFT with parameters determined by the
data of NN scattering or 2B/3B systems.
too “hard" to be used for mean-field-based
approaches

potential softened with SRG evolution
(decoupling matrix elements between low- and
high-momentum states)

S. K. Bogner et al. (2010)
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GCM calculations starting from a softened chiral interaction

The EM1.8/2.0 (~ω = 16 MeV) chiral interaction
Hebeler, Bogner, Furnstahl, Nogga, Schwenk (2011)

The collective properties are reasonably described. However, the entire spectrum
is systematically shifted up to high energy.

Some correlations missing

J. M. Yao FRIB/MSU Ab initio calculation of deformed nuclei 6 / 32



Missing correlations from ...

coupling of the reference state |Φ〉
with other states by the H.

A unitary transformation can be introduced
to decouple the reference state from other
states.
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What’s the unitary transformation?

For a given Hamiltonian H0 with the bare nuclear interaction, the exact ground-state
wave function |Ψ0〉 is determined by

H0|Ψ0〉 = Eg.s.|Ψ0〉
Let’s assume this wave function is connected to the reference (or GCM) state |Φ〉 with

a unitary transformation

|Ψ0〉 = e−Ω|Φ〉, Ω = −Ω† = Ω(1) + Ω(2) + · · ·
It indicates that the |Φ〉 is the ground-state of the effective Hamiltonian Heff. = eΩH0e−Ω,

Heff.|Φ〉 = Eg.s.|Φ〉.

The mean-field based approaches (GCM) can still arrive at the correct solutions,
provided that the unitary transformation eΩ is known.

The unitary transformation decouples the reference state from all other states.

Many-body correlations are encoded into the effective Hamiltonian.

The reference state |Φ〉 can in principle be chosen as any state (not orthogonal to
the exact ground state).
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IMSRG: a convenient way to derive the unitary transformation

A set of continuous unitary
transformations onto the Hamiltonian

H(s) = U(s)H0U†(s)

Flow equation for the Hamiltonian

dH(s)

ds
= [η(s),H(s)]

where the η(s) is the so-called
generator chosen to decouple a given
reference state from its excitations.

Computation complexity scales
polynomially with nuclear size Tsukiyama, Bogner, and Schwenk (2011);

Hergert, Bogner, Morris, Schwenk, Tsukiyama (2016)

Not necessary to construct the H matrix elements in many-body basis !
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IMSRG: a convenient way to derive the unitary transformation

IMSRG for closed-shell nuclei

The ref. state |Φ〉 is chosen as a
single-determinant (HF) state.

Good agreement with other
ab-initio calculations.

Tsukiyama, Bogner, Schwenk (2011)

Caveats

Higher-body operators are
induced in the flow.

NO2B: truncation up to
normal-ordered two-body terms
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IMSRG for open-shell nuclei

MR-IMSRG

Strong pairing correlations

NO2B approximation on top of
single-reference state is not sufficient

Extension to multi-reference
framework

Hergert, Binder, Calci, Langhammer, Roth (2013)

Valence-space IMSRG

Decoupling the interaction into a small
valence space

Full CI in the valence space

Bogner, Hergert, Holt, Schwenk, Binder, Calci,
Langhammer, Roth (2014);
Stroberg, Calci, Hergert, Holt, Bogner, Roth,
Schwenk (2016)
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Extensions to excited states of open-shell nuclei: VS-IMSRG

The E2 transition operator might not be decoupled into the small model space in
the same manner as that of the interaction.

NO2B approximation starting from spherical HF state is not able to capture
sufficient collective correlations.
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Building many-body correlations into interaction with IMSRG
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IMSRG+GCM calculations starting from a softened chiral interaction
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starting from a SRG softened chiral interaction
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Applications: onset of large deformation in “magic" nuclei
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Applications: onset of large deformation in “magic" nuclei
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Application: 0νββ from 48Ca to 48Ti

2

radius [13]. The normal-ordered two-body (NO2B) approxi-
mation is adopted for the 3N forces with an additional energy
cut on three-body matrix elements e1 + e2 + e3  E3max = 14.
Here, the eis are single-particle energies (in units of ~⌦) of the
harmonic-oscillator basis.

Starting from the Hamiltonian (2), we carry out a variation
after particle-number projection (PNVAP) calculation within
the framework of the symmetry-unrestricted Hartree-Fock-
Bogliubov (HFB) approach. This calculation provides us with
a convenient way to choose a reference state for the IM-SRG
calculation [14]. Here, we choose it as an ensemble of the
energy-minimum states of Ca48 and Ti48 with proper quantum
numbers. We normal-order the Hamiltonian (2) with respect
to this reference state and decouple the reference state from all
its excitation states through a continuous unitary transforma-
tion U(s) = e⌦(s), where ⌦(s) is an anti-hermitian many-body
operator determined by the flow equation [15]

d⌦(s)
ds

=

1X

n=0

Bn

n!
adk
⌦(s)(⌘(s)) (3)

where Bn=0,1,2,··· are the Bernoulli numbers, adk
⌦(⌘) =

[⌦, adk�1
⌦ (⌘)] is a chain of nested commutators with ad0

⌦(⌘) =
⌘, and ⌘(s) is the generator of the IM-SRG transformation.
All the operators of interest are evolved with the same unitary
transformation and computed by using the Baker-Campbell-
Hausdor↵ formula

O(s) = e⌦(s)Oe�⌦(s) =

1X

n=0

1
n!

adk
⌦(O). (4)

The IM-SRG flow brings many-body correlations into the
Hamiltonian and transforms the Hamiltonian to be more suit-
able for mean-field and beyond calculations. By using the
ensemble reference state, we are able to derive an e↵ective
Hamiltonian with a single unitary transformation for both
initial and final nuclei and the evolved 0⌫�� decay opera-
tor, avoiding the di�culty of having two di↵erent ones [16].
With the evolved Hamiltonian H(s), we carry out a sec-
ond PNVAP calculation which generates a set of number-
projected HFB wave functions |�(Q)i with Q = {q2µ, �np}
representing di↵erent average values of quadrupole moments
q2µ = h�(Q)|r2Y2µ|�(Q)i and neutron-proton isoscalar pair-
ing amplitude �np = h�(Q)|P†0|�(Q)i + h�(Q)|P0|�(Q)i. The
neutron-proton isoscalar pairing operator is defined as

P†µ =
1p
2

X

`

ˆ̀[a†
`
a†
`
]L=0,J=1,T=0
0µ0 , (5)

where ˆ̀ =
p

2` + 1, and L, J,T are the coupled orbital angu-
lar momentum, total angular momentum, and isospin of the
neutron-proton pair. If not mentioned explicitly, we impose
axial symmetry for the HFB wave functions which, as we will
see, is a good approximation for Ca48 and Ti48 . The wave
functions of low-lying states are constructed as a linear su-
perposition of these HFB wave functions projected onto good

FIG. 1. The particle-number projected potential energy surfaces of
Ca48 and Ti48 in the deformation (�2, �) plane. The two neighbouring

contour lines are separated by 1 MeV.

particle numbers (N,Z) and angular momentum J within the
GCM framework,

| JNZi =
X

Qi

FJNZ(Qi) |JNZ(Qi)i , (6)

where |JNZ(Qi)i ⌘ PJ PN PZ |�(Qi)i with PN(Z) and PJ be-
ing the projection operators onto particle numbers and angu-
lar momentum, respectively. The mixing weight FJNZ(qi) is
determined via the variational principle, leading to the Hill-
Wheeler-Gri�n (HWG) equation [17]
X

Q j

h
H JNZ(Qi,Q j) � EJ

↵N JNZ(Qi,Q j)
i

FJNZ
↵ (Q j) = 0, (7)

where the kernels of operators O are defined as

OJNZ(Qi,Q j) = hJNZ(Qi)|O|JNZ(Q j)i . (8)

The HWG equation (7) is solved as follows [17]: First, we
diagonalize the norm kernel matrix N JNZ(Qi,Q j) and obtain
its eigenvalues nJ

k and eigenvectors uJ
k (Qi), from which we

construct an orthonormal basis of the “natural" states by re-
moving the eigenvalues with nJ

k less than a given cuto↵ value.
The Hamiltonian matrix in this new basis is constructed as

H J
kl =

1q
nJ

k nJ
l

X

Qi,Q j

uJ
k (Qi)H JNZ(Qi,Q j)u

J
l (Q j) (9)

which is subsequently diagonalized
X

l

H J
klG

J
l = EJ

↵G
J
l , (10)

where ↵ labels di↵erent states for a given spin J. The col-
lective wave functions gJ

↵(Q) =
P

k GJ
k uJ

k (Q) are usually in-
troduced and interpreted as probability amplitude as they are
orthogonal to each other. The GCM method combined with
modern energy density functionals (EDF) is referred to mul-
tireference (MR-) EDF [18–20] which has achieved a great
success for low-lying states of nuclei with complex shapes.
It has been found however that most of the MR-EDF frame-
works may su↵er from the issue of spurious divergences and
finite steps [21, 22], and therefore a lot of e↵ort is devoted to
addressing this issue. We note that this issue does not exist in
our Hamiltonian-based calculation.

PNVAP calculation with the IMSRG
evolved chiral interaction.

Extrapolation of the ground-state energy

JMY, B. Bally, J. Engel, R. Wirth, T.R. Rodríguez, H. Hergert, arXiv:1908.05424
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Application: 0νββ from 48Ca to 48Ti

M0ν =
4πR
g2

A

∫
d3~r1

∫
d3~r2

∫
d3~q

(2π)3

ei~q·(~r1−~r2)

q[q + Ē − (Ei + Ef )/2]

×〈0+
F |e

Ω
[
J †µ(~r1)J µ†(~r2)

]
e−Ω|0+

I 〉
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Application: 0νββ from 48Ca to 48Ti

M0ν =

∫
dr12 C0ν(r12)

The quadrupole deformation in 48Ti changes
both the short and long-range behaviors

The neutron-proton isoscalar pairing is mainly
a short-range effect

φnp = 〈Φ|P†0 |Φ〉+ 〈Φ|P0|Φ〉

with

P†µ =
1
√

2

∑
`

ˆ̀[a†`a
†
` ]L=0,J=1,T =0

0µ0

J. M. Yao FRIB/MSU Ab initio calculation of deformed nuclei 20 / 32



Application: 0νββ from 48Ca to 48Ti

The value from Markov-chain
Monte-Carlo extrapolation is
M0ν = 0.61+0.05

−0.04

The neutron-proton isoscalar pairing
fluctuation quenches ∼17% further,
which might be canceled out partially
by the isovector pairing fluctuation.
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Summary and outlook

Take-away messages:

The IMSRG+GCM (IMGCM) opens a door to modeling deformed nuclei with
realistic nuclear forces (from chiral EFT). Many interesting phenomena of
low-energy physics (shape transition, coexistence, clustering structure) can be
explored within this framework.

The shape evolutions along Z = 12 and N = 28 chains are studied. The IMGCM
shows promising results in the description of the systematics in the low-lying
states.

The NME for the neutrinoless double beta decay from spherical 48Ca→ deformed
48Ti is calculated with the IMGCM. Deformation shows a strong quenching effect
on the NME.

What’s next:

From IMSRG(2) to IMSRG(3)

Extension to heavier nuclear systems:
M0ν , single-β decay of nuclei relevant for r -process nucleosynthesis, etc
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Recent development: GT transition to odd-odd nucleus

a simple ansatz for the wave function for odd-odd nucleus∣∣∣42
Sc; JNZ (β2, φnp)

〉
=
∑
K ,pn

f JNZ
K (β2)P̂N P̂Z P̂J

MK [β†pβ
†
n ]
∣∣∣42

Sc; HFB(β2, φnp)
〉

(1)

The GT transition strength (gA is taken as 1)

B(GT− : 0+
1 → 1+

m) =
∣∣∣〈1+

m||Ô
−
GT||0

+
1 〉
∣∣∣2 (2)

Benchmark calculation with a SM interaction

−20 −15 −10 −5
E (1+m) [MeV]

0

1

2

3

4

5

B
(G

T
−

)

42Ca(0+1 ,GCM) →42Sc(1+m ,β2 = 0.0)
42Ti(0+1 ,GCM) →42Sc(1+m ,β2 = 0.1)

SM(GXPF1A)

J. M. Yao FRIB/MSU Ab initio calculation of deformed nuclei 23 / 32



Recent development: deformation effect in 48Ti on B(GT +)

−80 −78 −76 −74 −72 −70 −68 −66
E (1+m) [MeV]

0.0
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0.4

0.6

0.8
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1.6

B
(G

T
+

)

(a)

SM (GXPF1A)
48Ti(0+1 ,β2 = 0.0) →48Sc(1+m ,β2 = 0.0,φnp = 0)
48Ti(0+1 ,β2 = 0.2) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4) →48Sc(1+m ,β2 = 0.2,φnp = 0)

−80 −78 −76 −74 −72 −70 −68 −66
E (1+m) [MeV]

0

1

2

3

4

5

6

7

8

9

10

∑
B

(G
T
+

)

(b)

SM (GXPF1A)
48Ti(0+1 ,β2 = 0.0) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.2) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4) →48Sc(1+m ,β2 = 0.2,φnp = 0)

Quadrupole deformation in
48Ti reduces the B(GT +)
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Recent development: np pairing effect in 48Ti on B(GT +)

−80 −78 −76 −74 −72 −70 −68 −66
E (1+m) [MeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
(G

T
+

)

(a)

SM (GXPF1A)
48Ti(0+1 ,β2 = 0.4,φnp = 0) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4,φnp = 1) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4,φnp = 2) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4,φnp = 3) →48Sc(1+m ,β2 = 0.2,φnp = 0)

−80 −78 −76 −74 −72 −70 −68 −66
E (1+m) [MeV]

0

1

2

3

4

5

∑
B

(G
T
+

)

(b)

SM (GXPF1A)
48Ti(0+1 ,β2 = 0.4,φnp = 0) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4,φnp = 1) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4,φnp = 2) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,β2 = 0.4,φnp = 3) →48Sc(1+m ,β2 = 0.2,φnp = 0)

neutron-proton isoscalar pairing in
48Ti reduces significantly the
B(GT+ :48 Ti→48 Sc).
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Recent development: deformation/np pairing effects in 48Sc

−80 −78 −76 −74 −72 −70 −68 −66 −64 −62 −60
E (1+m) [MeV]
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(a)

SM (GXPF1A)
48Ca(0+1 ,GCM7) →48Sc(1+m ,β2 = 0.0,φnp = 0)
48Ca(0+1 ,GCM7) →48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ca(0+1 ,GCM7) →48Sc(1+m ,β2 = 0.2,φnp = 2)

−80 −78 −76 −74 −72 −70 −68 −66 −64 −62 −60
E (1+m) [MeV]
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∑
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(G
T
−

)

(b)

SM (GXPF1A)
48Ca(0+1 ,GCM7)→48Sc(1+m ,β2 = 0.0,φnp = 0)
48Ca(0+1 ,GCM7)→48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ca(0+1 ,GCM7)→48Sc(1+m ,β2 = 0.2,φnp = 2)
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(a)

SM (GXPF1A)
48Ti(0+1 ,GCM56)→48Sc(1+m ,β2 = 0.0,φnp = 0)
48Ti(0+1 ,GCM56)→48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,GCM56)→48Sc(1+m ,β2 = 0.2,φnp = 2)

−80 −78 −76 −74 −72 −70 −68 −66
E (1+m) [MeV]

0

1

2

3

4

∑
B

(G
T
−

)

(b)

SM (GXPF1A)
48Ti(0+1 ,GCM56)→48Sc(1+m ,β2 = 0.0,φnp = 0)
48Ti(0+1 ,GCM56)→48Sc(1+m ,β2 = 0.2,φnp = 0)
48Ti(0+1 ,GCM56)→48Sc(1+m ,β2 = 0.2,φnp = 2)

Quadrupole deformation in 48Sc is essential to reproduce the B(GT +)

np pairing in 48Sc reduces slightly the B(GT +)
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Recent development: two-neutrino double-beta decay

GCM calculation for the NME of two-neutrino double-beta decay transition

M2ν =
∑

m

〈0+
f ||στ

−||1+
m〉〈1+

m||στ−||0+
i 〉

E(1+
m)− [E(0+

i + E(0+
f )]/2

(3)

0.0

0.1

0.2

0.3

0.4

B
(G

T
+

)

(a)

The quenched BGT (0.772)
48Ti(0+1 , GCM56 →48Sc(1+m ,β2 = 0.2)

SM(GXPF1A)
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)

(b)
48Ca(0+1 ,GCM7)→48Sc(1+m ,β2 = 0.2)

SM(GXPF1A)
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M
2ν

NEMO-3(2016)

48Sc(β2 = 0.2) quenching factor (0.772)

SM(GXPF1A)
48Ca(GCM7) →48 Ti (GCM56)
(×0.72)

The M2ν is dominated by the transition through the first 1+ state in the
intermediate nucleus (overestimated).
The model space is still not sufficient (expected to decrease the NME).
Interest to see the results with the IMSRG+GCM starting from a chiral interaction
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PESs
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Speeding up the convergence of the NCSM with IMSRG

MR-IMSRG+NCSM

NCSM with Nmax = 0 for the
reference state

MR-IMSRG evolution in a
large model space

Convergence of the NCSM
with the evolved interaction is
speeded up.

Gebrerufael, Vobig, Hergert, Roth (2017)
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Extensions to excited states of open-shell nuclei: VS-IMSRG

VS-IMSRG for excited states of sd-shell nuclei

Review: Stroberg, Bogner, Hergert, Holt (2019)
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Applications: onset of large deformation in “magic" nuclei

One-body density in natural basis

ρji (s) = 〈0+
1 |e

Ω(s)[c†i c̃j ]
0e−Ω(s)|0+

1 〉

= 〈0+
1 |[c

†
i c̃j ]

0|0+
1 〉+ 〈0+

1 |[Ω(s), [c†i c̃j ]
0]|0+

1 〉+ · · ·

where the wave function |0+
1 〉 is from the GCM calculation with the

H(s) = eΩH0e−Ω.
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